Микросхема для драйвера тока для светодиодов
Микросхема для драйвера тока для светодиодов
ДРАЙВЕР ДЛЯ СВЕРХЯРКИХ СВЕТОДИОДОВ
Микросхема HV 9910 выпускается фирмой Supertex I nc . для применения в светодиодных лампах, питающихся напряжением от 8 до 450 V (!).
Микросхема представляет собой импульсный источник стабильного тока через светодиод или светодиодную матрицу составленную из последовательно включенных суперярких светодиодов . Входное напряжение постоянного тока мо жет быть от 8 до 450 V ( при работе от переменного тока используется мостовой или другой выпрямитель ).
Микросхема работает совместно с внешним высоковольтным MOSFET транзистором . Частоту переключения можно регулировать от нескольких десятков килогерц до 300 кГц путем изменения сопротивления одного резистора , подключенного к выводу RT . Ток через светодиоды можно задать от единиц миллиампер до 1 А путем изменения величины контрольного сопротивления , включенного в цепи истока выходного транзистора . Напряжение с этого сопротивления поступает на вывод CS микросхемы , и по величине этого напряжения вычисляется величина тока .
Кроме того , яркостью светодиода ( или светодиодов ) можно управлять подачей управляющих импульсов на вывод PWM , при этом происходит модуляция этими импульсами более высокочастотного импульсного сигнала , на котором происходит преобразование. Соответственно скважности модулирующих импульсов изменяется и яркость светодиодов . При подаче логической единицы на вывод PWM генератор включен , а при подаче нуля — выключен . В микросхеме имеется встроенный стаби лизатор напряжения 7,5 V, который может быть использован для системы управления . Частоту генератора можно установить в диапазоне от 25 до 300 кГц изменением сопротивления резистора на выводе Rt ( или Rosc ). Частота определяется по формуле : F = 25000/( R +22). Частота выражена в кГц , сопротивление в кОм . Частота импульсов ШИМ , подаваемых на вывод PWM может быть от 100 Гц до 5 кГц . При этом , скважность импульсов может быть от нуля до 100% , то есть , практически любая . Соответствующим образом будет изменяться яркость светодиода ( или светодиодов ). Сопротивление контрольного резистора в цепи истока выходного транзистора выбирают таким , чтобы при максимальном токе напряжение на нем было равно 0.25 V .
Используя подобный драйвер Вы однозначно избежите злоключений, кторые постигли меня — спешка в при включении мощных светодиодов разлучила меня с несколькими, пусть и не очень дорогими светодиодами:
Выход я конечно нашел — собрал стабилизатор тока, но только максимально к нему можно подключить всего два светодиода:
Светодиоды покупал ЗДЕСЬ, но товар видимо закончился, поэтому в следующий раз буду брать ЗДЕСЬ. Разумеется в планах есть покупка и описанного в статье драйвера для светодиодов. Результаты поисков ЗДЕСЬ.
По поводу мощных светодиодов для освещения остается добавить, что ТЕПЛЫЙ СВЕТ лучше для жилых помещений, он хоть немного тусклее, но намного приятней глазу, а вот для уличных фонарей лучше брать ХОЛОДНЫЙ — светит заметно ярче.
Разумеется, что это не единственная схема драйвера для светодиодов. Можно использовать и схемы работающие в линейном режиме стабилизатора тока. Для начала схема подобного драйвера была исследована в симуляторе, причем проверялись практически все режимы работы с различным количеством светодиодов и при различных величинах напряжения питания:
В приведенной схеме диодный мост и сглаживающий фильтр сетевого напряжения питания заменен на эквивалент — источник постоянного тока с напряжением 310 вольт. Проверка показала возможность запитки до 50-60 штук светодиодов с током от 15 до 25 мА, при этом диапазон питающего сетевого напряжения составляет от 160 до 260 вольт без изменения яркости свечения. Если диапазон питания уменьшить, то возможно подключение и 60-70 светодиодов. Единственный недостаток данного драйвера — довольно высокое тепловыделение на силовом транзисторе и тем оно выше, чем мощнее будут светодиоды. Поэтому при использовании данного драйвера необхдимо предусмотреть соответствующий радиатор для силового транзитора. Для питания сорока светодиодов при токе 24-25 мА радиатора от чипсета материнской платы треьего Пентиума вполне хватило.
Более подробно об этой схеме линейного драйвера можно посмотреть в видео:
В видео использованы светодиоды купленные ЗДЕСЬ.
На схеме установлено 84 светодиода и номинал измерительного резистора составил 3,6 Ома. Однако при первичных тестах от пониженного напряжения стало понятно, что ток в 0,15 А для этих светодиодов слишком велик и после нескольких подюоров измерительный резистор стабилизатора тока приобрел номинал равный 26 Омам. Плата со светодиодами была установлена на радиаотор через термопасту и через 20-30 минут нагревается до температуры 60 градусов, т.е. как бы и этого многовато.
По поводу этой матрицы было снято видео и благодаря подписчику LINKS_234 стала доступна более расширенная информация по пооводу этих и им аналогичных светодиодов.
Использования данного стабилизатора тока в схеме светодиодного драйвера на светодиодах SMD.
Прежде всего удалось выявить более-менее надежного продавца, чьи светодиоды соответствуют заявленым в описании характеристикам. Светодиоды конечно же несколько дороже, однако тут уж выбирайте сами — либо цена, либо качество.
Я покупал ЗДЕСЬ, а надо было покупать светодиоды ЗДЕСЬ.
Кроме всего прочего так же выяснилось, что совсем не обязательно самому паять SMD светодиоды, поскольку уже есть уже ГОТОВЫЕ СВЕТОДИОДНЫЕ МАТРИЦЫ на различные мощности. Разннобразие и мощностной диапазон просто огромный и я обязательно что то для себя приобрету.
Было бы не справедливо умолчать еще об одной интересной ссылке — светодиодные лампы на 220 вольт нового поколения. Конструктив данных ламп провел впечатление, а положительный отзыв давнего проверенного подписчика позволяет верить тому, что лампы действительно хороши. Лампы на 3, 7, 9 и 12 Вт.
Как и положено есть возможность выбора ТЕПЛОГО или ХОЛОДНОГО света, впрочем подроности смотрите сами ЗДЕСЬ.
Схема драйвера для светодиода от сети 220В
Современные мощные светодиоды отлично походят для организации яркого и эффективного освещения. Некоторую сложность составляет питание таких светодиодов – требуются мощные источники постоянного тока и токостабилизирующие драйвера. Вместе с тем, в любом помещении имеется розетка с переменным напряжением в 220В. И, конечно же, очень хотелось бы организовать работу мощных светодиодов от сети с минимальными затратами. Нет ничего невозможного – давайте рассмотрим схему драйвера для светодиода от сети 220В.
Прежде чем начнем обсуждать конкретные схемы, хотелось бы напомнить, что работа будет вестись с потенциально опасным для жизни переменным напряжением 220В. Разработка и расчет схемы потребуют хотя бы общего понимания происходящих электрических процессов, вероятность того, что при совершении ошибки вы можете получить ущерб или повреждения, очень высока. Мы категорически не одобряем проведение работ с высоким напряжением, если вы чувствуете себя неуверенно и не несем ответственности за возможный ущерб и повреждения, которые вы можете получить в процессе работы над предлагаемыми схемами. На самом деле, вполне возможно, что проще и дешевле будет приобрести и использовать уже готовый драйвер или даже светильник целиком. Выбор за вами.
Обычно падение напряжения на светодиоде составляет от 3 до 30В. Разница с сетевым напряжением в 220В очень большая, поэтому понижающий драйвер, безусловно, будет импульсным. Имеется несколько специализированных микросхем для изготовления таких драйверов – HV9901, HV9961, CPC9909. Все они очень похожи и от других микросхем отличаются тем, что имеют очень широкий диапазон допустимого входного напряжения – от 8 до 550В – и очень высокий КПД – до 85-90%. Тем не менее, предполагается, что общее падение напряжения на светодиодах в готовом устройстве будет составлять не менее 10-20% от напряжения источника питания. Не стоит пробовать запитать от 220В, например, один-два 3-6-ти вольтовых светодиода. Даже если они не сгорят сразу, КПД схемы будет низким.
Рассмотрим драйвер на базе микросхемы CPC9909, поскольку она новее остальных и вполне доступна. Вообще, все указанные микросхемы взаимозаменяемы и совместимы попиново (но потребуется пересчитать параметры дросселя и резисторов).
Базовая схема драйвера следующая:
Схема драйвера для светодиодов на базе микросхемы CPC9909
Переменное сетевое напряжение необходимо предварительно выпрямить, для этого используется диодный мост. C1 и C2 – сглаживающие конденсаторы. C1 – электролит емкостью 22мкФ и напряжением 400В (при использовании сети 220В), C2 – керамический конденсатор емкостью 0,1мкФ, 400В. Конденсатор С3 – керамика 0,1мкФ, 25В. Микросхема CPC9909 в процессе работы генерирует импульсы, которые открывают и закрывают силовой транзистор Q1, тем самым управляя течением тока через светодиоды. Частота переключения, индуктивность дросселя L, параметры мосфета Q1 и диода D1 тесно взаимосвязаны и зависят от требуемого падения напряжения на светодиодах, их рабочем токе. Давайте попробуем рассчитать нужные параметры ключевых деталей схемы на конкретном примере.
У меня есть могучий светодиод. 50 ватт мощности, напряжение 30-36В, рабочий ток до 1.4А. 4-5 ТЫСЯЧ люменов! Мощность света неплохого прожектора.
COB cветодиод 50 ватт
Для охлаждения я посредством термопасты и суперклея посадил его на кулер от видеокарты.
Максимальный ток светодиода ограничим 1А. Значит
Падение напряжения на светодиодах –
Пульсацию тока примем равной +-15%:
ID = 1 * 0.15 * 2 = 0.3A
При напряжении сети переменного тока в 220В напряжение после выпрямительного моста и сглаживающих конденсаторов составит
Ток драйвера регулируется резистором Rs, сопротивление которого рассчитывается по формуле
Rs = 0.25 / ILED = 0.25 / 1 = 0.25 Ом.
Используем резистор 0.5W 0.22 Ом в SMD-корпусе 2512:
что даст ток 1.1А. При таком токе резистор будут рассеивать примерно 0.2Вт тепла и особо греться не будет.
Микросхема CPC9909 генерирует управляющие импульсы. Общая продолжительность импульса складывается из времени «высокого уровня», когда мосфет открыт и продолжительности паузы, когда транзистор закрыт. Жестко зафиксировать мы можем только продолжительность паузы. За нее отвечает резистор Rt. Его сопротивление рассчитывается по формуле:
Rt = (tp — 0.8) * 66 , где tp — пауза в микросекундах. Сопротивление Rt получается в килоомах.
Продолжительность «высокого уровня» — это время, за которое рабочий ток достигнет требуемого значения — регулируется микросхемой CPC9909. Штатный диапазон частот находится в пределах 30-120КГц. Причем, чем выше будет частота, тем меньшая индуктивность дросселя в итоге потребуется. Но тем больше будет греться силовой транзистор. Поскольку индуктивность дросселя (и связанные с ней его габариты) для нас важнее, будем стараться держаться верхней части допустимого диапазона частот.
Давайте рассчитаем допустимое время паузы. Отношение продолжительности «высокого уровня» к общей продолжительности импульса — скважность импульса — рассчитывается по формуле:
D = VLED / VIN = 30 / 310 = 0.097
Частота переключений рассчитывается так:
F = (1 — D) / tp , а значит tp = (1 — D) / F
Пусть частота будет равна 90КГц. В этом случае
tp = (1 — 0.097) / 90 000 = 10мкс
Соответственно, потребуется сопротивление резистора Rt
Rt = (10 — 0.8) * 66 = 607.2КОм
Ближайший доступный номинал — 620КОм. Подойдет любой резистор с таким сопротивлением, желательно с точностью 1%. Уточняем время паузы с резистором номиналом 620КОм:
tp = Rt / 66 + 0.8 = 620 / 66 + 0.8 = 10.19мкс
Минимальная индуктивность дросселя L рассчитывается по формуле
Используя уточненное значения tp, получаем
Lmin = (30 * 10.19) / 0.3 = 1мГн
Рабочий ток дросселя, при котором он гарантированно не должен входить в насыщение — 1.1 + 15% = 1.3А. Лучше взять с полуторным запасом. Т.е. не менее 2А.
Готового дросселя с такими параметрами в продаже я не нашел. Нужно делать самому. Вообще расчет катушек индуктивности — это большая отдельная тема. Здесь же я лишь оставлю ссылку на основательный труд Кузнецова А. «Трансформаторы и дроссели для импульсных источников питания».
Я использовал дроссель, выпаянный из нерабочего балласта обычной энергосберегающей лампы. Его индуктивность 2мГн, в сердечнике оказался зазор около 1мм. Считаем рабочий ток, получаем до 1.3 — 1.5А. Маловато, но для тестовой сборки пойдет.
Остались силовой транзистор и диод. Здесь проще — оба должны быть рассчитаны на напряжение не менее 400В и ток от 4-5А. Быстрый диод Шоттки может быть, например, таким — STTH5R06. Мосфет должен быть N-канальным. Для него крайне важно минимальное сопротивление в открытом состоянии и минимальный заряд затвора — менее 25нКл. Прекрасный выбор на нужный нам ток — FDD7N60NZ. В корпусе DPAK и с током до 1А греться он особо не будет. Можно будет обойтись без радиатора.
При разводке печатной платы нужно уделить внимание длине проводников и правильному расположению «земли». Проводник между CPC9909 и затвором полевого транзистора должен быть как можно короче. Это же относится и к проводнику от сенсорного резистора. Площадь «земли» должна быть как можно больше. Очень желательно один слой печатной платы полностью развести на землю. Резистор Rt нужно подальше от индуктивности и других проводников, работающих на высоких частотах.
Вывод LD микросхемы может быть использован для плавной регулировки яркости свечения светодиода, вывод PWMD – для димирования посредством ШИМ.
Вот примеры из технической документации, которые это реализуют.
Схема плавного регулирования яркости светодиодов.
На этой схеме сила тока, а соответственно, и яркость светодиодов плавно регулируется от нуля до 350мА переменным резистором RA1. Также на схеме присутствуют номиналы и названия ключевых элементов для питания линейки ярких светодиодов током до 350мА.
Схема, предполагающее управление яркостью посредством ШИМ, выглядит так:
Схема регулирования яркости светодиодов посредством ШИМ
Допустимая частота диммирования — до 500Гц. Обратите внимание на очень желательную электрическую развязку генератора регулирующих импульсов (обычно, это микроконтроллер) и силовой части схемы. Развязка выполнена посредством использования оптопары.
Я собрал схему с плавной регулировкой переменным резистором. Получилась плата 60х30мм.
Плата драйвера для светодиода от сети 220В
Драйвер заработал сразу и так как нужно. Переменным резистором ток регулируется от 0.1 до расчетных 1.1А. Вентилятор кулера где установлен светодиод запитан от 3-х вольт. Вращается совершенно без звука, при этом радиатор греется слабо. На плате после 5-ти тестовых минут работы на максимальном токе градусов до 50С нагрелся дроссель. Его рабочего тока, как и ожидалось, оказалось маловато. Также заметно греется полевой транзистор. Остальные детали греются незначительно.
Сердце будущего мощного светильника в тестовом запуске
Разводку платы в программе Sprint-Layout 6.0 можно взять здесь.
Спустя какое-то время светодиод с драйвером заняли свое рабочее место в освещении аквариума. Работают по 15 часов в день при токе 0.7А. Света для аквариума объемом в 140 литров, на мой взгляд, вполне достаточно. Радиатор снабдил термистором и простенькой схемой — кулер включается автоматически и охлаждает всю конструкцию.
Драйвер для светодиода от сети 220В требует внимания при проектировании и сборке. Повторюсь — напряжение 220В опасно для жизни, а на схеме драйвера практически все детали находятся под этим и большим напряжением.
Тем не менее, при аккуратной сборке получится достаточно миниатюрный и эффективный драйвер, способный запитать от сети бытовой сети 220В один или несколько мощных светодиодов.
Больше о схемах драйверов для светодиодов читайте в статье «Самодельный драйвер для мощных светодиодов».
Новая микросхема STMicroelectronics для светодиодного драйвера
Изменения коснулись важнейших параметров производимых продуктов, поэтому простое обновление описанной конструкции [3] путем прямой замены ранее испытанных светотехнических компонентов на их более совершенные аналоги не может быть использовано. При создании светодиодных ламп на новой элементной базе следует учитывать важнейшие изменения параметров усовершенствованных электронных продуктов.
HVLED815
Если сравнивать прототип [4] с его более совершенным аналогом [5], в качестве главного отличия необходимо отметить возможность увеличения мощности светодиодов, подключаемых к драйверу, примерно втрое — с 5 до 15 Вт. В связи с возросшей мощностью преобразователя разработчики предусмотрели вариант схемотехнического построения драйвера, в котором потребляемый от сети ток по форме соответствует питающему синусоидальному напряжению, что позволяет увеличить коэффициент мощности в лампе до значений, превышающих 0,9. Для реализации такого схемотехнического решения в новой микросхеме внутреннее подключение истока коммутирующего транзистора, соединенного с внешним резистивным датчиком тока, к цепи мониторинга мгновенного значения этого тока разомкнуто. Подавая контрольный сигнал через внешние резистивно-емкостные цепи, соединенные со вспомогательной обмоткой импульсного трансформатора и сетевым напряжением, форму тока, потребляемого преобразователем, можно приблизить к синусоидальной [5].
В целом же новая микросхема, как и ранее, позволяет конструктору создавать высокоэффективный сетевой светодиодный драйвер на основе квазирезонансного AC/DC-преобразователя со встроенным высоковольтным коммутирующим транзистором. Регулирование постоянного выходного тока и напряжения с допустимым 5%-ным отклонением осуществляется по первичной стороне преобразователя, в связи с чем снимается потребность в датчиках тока и напряжения во вторичной цепи, а также отпадает необходимость введения оптоэлектронного преобразователя между первичными и вторичными цепями преобразователя в целях гальванической развязки светодиодной лампы с первичной сетью 220 В. Встроенные в микросхему дополнительные цепи обеспечивают ее защиту как от короткого замыкания, так и от обрывов в нагрузке. Помимо этого, плавный пуск преобразователя при старте производится непосредственно от высокого выпрямленного сетевого напряжения, а нестабильность сетевого напряжения дополнительно компенсируется при стабилизации выходного напряжения и тока.
По конструктивному исполнению корпус новой микросхемы не отличается от прототипа. Для проектирования светодиодного драйвера на основе микросхемы HVLED815PF целесообразно использовать программу автоматизированного проектирования eDesignSuite [2], учитывающую необходимые в расчетах технические параметры нового прибора.
Светодиоды
Новая серия 13-Вт светодиодов Samsung SPHWWTHDNA45YHVTJC [6] и SPHCWTHDNA45YHRTMC [7] по своим конструктивным и техническим параметрам (таблица) несколько отличается от прототипа SPHWWTHDD805WHW0DD. В таблице для краткости записи часть первых буквенных индексов в наименованиях светодиодов опущена. Даже беглый анализ представленной информации позволяет сделать однозначный вывод: новый светотехнический прибор по своим характеристикам превосходит прототип, при этом его стоимость значительно ниже.
Таблица. Основные параметры светодиодов, примененных в опытных образцах светодиодных ламп
О драйверах светодиодных светильников
Предлагаю вашему вниманию схемы драйверов светодиодных светильников, которые мне пришлось недавно ремонтировать. Начну с простой (фото 1, справа) и схема на рисунке 1.
Светодиодные светильники. Фото 1.
Драйвер светодиодного светильника на CL1502. Рис. 1.
В схеме этого драйвера установлена микросхема CL1502. Микросхем с подобными функциями выпущено уже много, и не только в корпусе с 8 ножками. На эту микросхему в интернете есть много технических данных, к примеру в [1]. Собран драйвер по «классической» схеме. Неисправность была в выгорании пары светодиодов. Первый раз просто закоротил их, так как находился вдали от «цивилизации». Тоже сделал и во второй раз. И когда сгорела третья пара, я понял, что жить этому светильнику осталось мало. Простым закорачиванием пар светодиодов, так просто не обойдёшься. Требовалось что-то по-кардинальные. Ранее я изучал схемотехнику и работу подобных микросхем, с целью укоротить светодиодную лампу, в корпусе трубчатой стеклянной люминисцентной 36 Ватт, с длины 120 сантиметров в 90, так как был в наличии такой светильник, установленный над рабочим столом. И всё удалось и работает. А здесь. Насколько я понял работу подобных светильников, с применением таких драйверов, то ничего плохого не должно происходить после закорачивания хотя бы всех светодиодов, кроме последней пары. Ведь всё в них решает датчик тока, в данной схеме это резисторы R3 и R4. Напряжение выделенное этими резисторами, попадая через выводы 7 и 8 микросхемы CL1502 к компаратору выключения силового ключа работают отлично. Но что-то всё же жжёт светодиоды. Но что? Моё предположение — их жжёт сам драйвер! Светодиоды применённые в этом светильнике, похожи на 2835SMDLED (0,5 Вт одного светодиода). И если это действительно они, то заявленная мощность светильника вполне оправдана. Но у меня, сильные подозрения, что в светильнике стоят 3528SMDLED, которые имеют параметры, чуть ли не на порядок ниже. Но понять мне это очень трудно, так как на SMD светодиодах нет обозначений. Что сделал я? Я убрал с платы резистор R4. При этом уменьшился ток через светодиоды и… светодиоды перестали сгорать. Что интересно, в строительном вагончике, в котором стояли три светильника одного типа, последовательно пришлось ремонтировать все три. И везде пришлось снять по одному резистору. И да, везде упал световой поток, хотя глазом это и трудно определить, но если сравнивать, то заметно.
В другом вагончике, было два светильника с внешними размерами 595х595 мм.. И они тоже «горели». В этих светильниках ячейки состояли из четырёх светодиодов в параллели и было таких 28 ячеек. Так как и там была подобная схема (поднять не удалось), то просто выпаял по одному резистору.
В итоге, можно сделать вывод, что ремонт можно выполнять, по подобной методике, то есть уменьшать ток через светодиоды, так как лучше, пусть светят темнее, чем совсем погаснут. Хотя конечно, правильнее поменять все светодиоды на 2835SMDLED, но это при их наличии.
Драйвер светодиодного светильника на B77CI. Рис. 2.
Схема второго драйвера, изображённого на рисунке 2, я «поднял» со светильника, который нашёл в металлоломе, с механическими поломками корпуса. На рисунке 3 схема четырёх плат светодиодов по 9 Вт каждая. Хотел снять светодиоды для запчастей. И даже, не сразу заметил невзрачную коробочку с драйвером. Схема оказалась почти «монстром».
Фонарь светодиодного светильника. Рис. 3.
Внешний вид платы драйвера на B77CI. Фото 2.
Наличие двух микросхем, двух мощных полевых транзисторов, двух дросселей и двух электролитических конденсаторов 220 мк х 100 В включенных параллельно, указывало на то, что разработчики поработали на славу. Так же присутствует довольно хорошая схема фильтров (смотрите фото 2). Микросхема DX3360T — это, по всей видимости, стабилизатор напряжения, и возможно, с корректором мощности. Я в интернете нашёл только невзрачную картинку, без описания. А на микросхему B77CI не нашёл ни чего, и названия выводов на схеме ставил, по интуиции. В работе этот драйвер не видел. Но предполагаю хорошую работу. Но если, придётся уменьшать ток через светодиоды, то нужно или убрать с платы один-два резистора Rs4..Rs6, или менять на другие, расчётные.
И ещё. Совсем не понятно, как в подобных светильниках организован отвод тепла от светодиодов. Ведь они запаиваются на платки из фольгированного стеклотекстолита, шириной в 5 мм. и толщиной примерно в 1 мм.? Думаю, что почти ни как. Всё ширпотреб.
Микросхема для драйвера тока для светодиодов
&�S@� �>������|�y �� � � G � %� ��P; ���q�Yu� � «�. 2 �145�3w� :�e��Xy�X�VN&a � � � 9v1�0I� (/�qba�ea � ��%P� �@U ;s � � f � � ‘1-Q� p�TphP8���Y�� � � y ��»��d;� � >>> endobj 31 0 obj >/ExtGState >/Font >/ProcSet[/PDF/Text]/XObject >>>/Rotate 0/TrimBox[0.0 0.0 595.276 833.386]/Type/Page>> endobj 32 0 obj > endobj 33 0 obj [/ICCBased 81 0 R] endobj 34 0 obj > endobj 35 0 obj > endobj 36 0 obj > endobj 37 0 obj >stream H���n�0 �� > endobj 39 0 obj >stream H� ]C���5/�w4� ��[dwc�����S���������zp �$wn���O��z��J������H ��/ �[ 飏WO�l��� �� �^���� � �0.��㒹Y�ƕr6n �Gn ���� �r��
nO�*==�鷿�aQZU���% ��L_��W�l<;v�y� O>���p��##’ g� ��wh ‘ v�� ` �/ � endstream endobj 55 0 obj > endobj 56 0 obj >stream H��Mn�0 ��>�,�E �$ BJH»��J
i� �| �� g_ �B�S*5�h�� -�� endstream endobj 64 0 obj >stream H��W[k%E
���:� /’� ��vGV� R � �+n숫� ��=UR�c�s3 �.���. L�a� z ���64 Ou(�2a��� ���|-�bu�� ` �� endstream endobj 78 0 obj >/ExtGState >/Font >/ProcSet[/PDF/Text]>>/Subtype/Form>>stream H�L�= A ���wH����d��U� �r�bQA�b� �r�+� [���g�F�@����WK �Lޭ^0���et�D�/�dN� XO$�HF4BW1�� M�sW��>χ^�׳�wm� �� bj6$ endstream endobj 79 0 obj >/ExtGState >/Font >/ProcSet[/PDF/Text]>>/Subtype/Form>>stream H�|QMk�0 � � tl s$�#�a ��6��2:(K�͠�_?�Iv ���Izy�w �’ &���4��
f�r endstream endobj 93 0 obj > endobj 94 0 obj >stream H���n�0 �� A��O�� �b/��og
f�r endstream endobj 18 0 obj > endobj 19 0 obj >stream H���n�0 �� A��O�� �b/��og
��C�wG >/ExtGState >/Font >/ProcSet[/PDF/Text]>>/Subtype/Form>>stream H�L�= A ���wH���d��U� �r�bQA�b� x*Y � � �l$# ��7�! O�rW�s>υ^��g���� �6� endstream endobj 21 0 obj > endobj 22 0 obj >stream H���n� ��y�s�^4�m�.1&ֶ� ���=��ёL$H/|�q�뒑`
�_�( j���n����WkY��8�m�8O���� �K��� � q�%�O���HFΈ�Q»�»Wħ�<�s��D/��ֿ'��o>�E|�pOI�� �G �P&J����d��h� h��O endstream endobj 23 0 obj > endobj 24 0 obj > endobj 25 0 obj > endobj 26 0 obj > endobj 27 0 obj >stream 2014-10-07T13:51:54+04:00 2014-10-07T13:51:59+04:00 2014-10-07T13:51:59+04:00 Adobe InDesign CS6 (Windows) uuid:baefd151-8a90-4405-a21f-4eebb78d29f9 xmp.did:951861BE1903E3118E28FA2EEADC9A77 xmp.id:1E0F216E034EE41184898843FC593BDA proof:pdf xmp.iid:9548631B4A49E411B55AF6B029CE02B4 xmp.did:5C910E28FF33E4119E50E1F37504AA7F xmp.did:951861BE1903E3118E28FA2EEADC9A77 default converted from application/x-indesign to application/pdf Adobe InDesign CS6 (Windows) / 2014-10-07T13:51:55+04:00 application/pdf
Adobe PDF Library 10.0.1
endstream endobj 28 0 obj > endobj xref 0 29 0000000000 65535 f 0000074097 00000 n 0000074541 00000 n 0000086875 00000 n 0000087307 00000 n 0000103936 00000 n 0000104380 00000 n 0000116887 00000 n 0000117331 00000 n 0000131440 00000 n 0000131897 00000 n 0000138338 00000 n 0000138660 00000 n 0000143484 00000 n 0000144006 00000 n 0000144441 00000 n 0000144992 00000 n 0000145158 00000 n 0000145464 00000 n 0000145746 00000 n 0000146183 00000 n 0000146600 00000 n 0000146820 00000 n 0000147182 00000 n 0000147467 00000 n 0000147503 00000 n 0000147534 00000 n 0000147617 00000 n 0000150339 00000 n trailer ]>> startxref 116 %%EOF