Максимальная сила тока для кабеля
Максимальная сила тока для кабеля
Наш инструмент расширенного поиска позволяет найти продукцию, в точности соответствующую вашим требованиям.
Выберите один или несколько фильтров Закрыть [ X ]
Выберите один или несколько фильтров Закрыть [ X ]
Профессионалы в сфере проектирования и изготовления кабельных вводов, кабельных скоб и аксессуаров
Позвонить нам +44 191 265 7411
Нужна помощь? Свяжитесь с нашими специалистами по +44 191 265 7411
Ниже представлено описание принципа расчета в компании CMP Products пиковых значений тока короткого замыкания (кА) для конкретного назначения и условий монтажа.
Компания CMP Products провела более 300 испытаний на короткое замыкание. Тем не менее, провести испытание для каждого значения тока отказа, кабельной скобы, размера и типа кабеля, а также конфигурации расположения крепежных отверстий не представляется возможным.
Компания CMP Products непрерывно разрабатывает программное обеспечение с целью воспроизведения данных испытаний и обладает возможностями провести испытания кабельных скоб, кабелей, кабельных лотков и кабельных лестниц, использование которых планируется в проекте при нестандартных условиях эксплуатации.
Компания CMP также обладает опытом, позволяющим точно рассчитать пиковые значения тока короткого замыкания (кА) на основе данных дорогостоящих испытаний, проверенных в универсальной программе для испытаний.
Испытания
Начиная с испытания на короткое замыкание при расстоянии между центрами крепежных отверстий скоб в 300 мм, устанавливается максимальное безопасное пиковое значение тока короткого замыкания в кА.
В примере ниже описано успешное прохождение испытаний кабельной скобы согласно требованиям стандарта IEC 61914:2009 при токе 190 кА, диаметре кабеля 36 мм и расстоянии между центрами крепежных отверстий 300 мм.
Расчет максимального показателя силы, воздействующей на испытываемую кабельную скобу
Для расчета силы, воздействие которой может выдержать кабельная скоба в процессе испытания, используются результаты испытаний, проведенных по стандарту IEC 61914:2009, из таблицы:
Ft — максимальная сила, действующая на кабель (Н/м)
ip — максимальное значение тока короткого замыкания (кА)
S — расстояние между осевыми линиями двух соседних проводников, например, в трехлистной компоновке оно соответствует наружному диаметру кабеля (м)
В данном примере величина Ft равна 170 472,22 Н/м
Ft — это величина силы в Ньютонах на метр, требуемая для расчета максимального значения силы, воздействие которой сможет выдерживать кабельная скоба, и которое должно быть умножено на расстояние между центрами крепежных отверстий кабельных скоб:
Максимальное значение силы, действующей на кабельную скобу = Ft (Н/м) x расстояние между центрами крепежных отверстий (м)
В данном примере максимальная сила, действующая на кабельную скобу (с учетом расстояния между центрами крепежных отверстий, равного 0,3 м), = 51 141,67 Н
Расчет показателя Ft для новых условий
После расчет максимальной силы, действующей на кабельную скобу, формула будет преобразована с целью расчета максимального КЗ при иных значениях расстояния между центрами крепежных отверстий, диаметров кабелей и пр.
Сперва необходимо рассчитать значение ip, если расстояние между центрами крепежных отверстий увеличилось до 600 мм, затем рассчитать значение Ft:
Ft — максимальная сила, действующая на кабель (Н/м)
ip — максимальное значение тока короткого замыкания (кА)
S — расстояние между осевыми линиями двух соседних проводников, т. е. наружный диаметр кабеля (м)
В данном примере значение Ft = 85 236,11 (Н/м)
После расчета значения Ft для данных условий эксплуатации следует рассчитать значение ip.
Расчет показателя i для новых условий
Ft — максимальная сила, действующая на кабель (Н/м)
ip— максимальное значение тока короткого замыкания (кА)
S — расстояние между осевыми линиями двух соседних проводников, т. е. наружный диаметр кабеля (м)
Значение ip в данном примере = 134,35 кА
Опыт показывает, что эти значения всегда ниже тех, которых удается достичь в условиях физического испытания. Это подтверждает учет показателя безопасности в расчетах стандарта IEC 61914:2009. И это хорошо, поскольку означает, что рассчитанные значения всегда указаны с запасом.
Это также значит, что значение Ft (максимальная сила, действующая на каждую кабельную скобу), полученное по результатам испытаний, следует использовать только с учетом расстояний между центрами крепежных отверстий, которые в действительности меньше тех, что были использованы в процессе испытания, в качестве величины для расчета значений ip. Не рекомендуется проводить расчет в обратном порядке, поскольку это будет противоречить показателю безопасности, использованному в стандартной ситуации, что приведет к получению нереалистичных значений ip.
Пример:
Кабель и кабельная скоба успешно прошли испытания по стандарту 61914:2009 при значении 150 кА и расстоянии между центрами крепежных отверстий 600 мм (рассчитанное значение ip составило 134,35 кА, что, по сути, превышает максимально возможное на
С учетом полученного нового значения ip рассчитываем значение Ft:
Ft — максимальная сила, действующая на кабель (Н/м)
ip — максимальное значение тока короткого замыкания (кА)
S — расстояние между осевыми линиями двух соседних проводников, т. е. наружный диаметр кабеля (м)
В данном примере величина Ft = 106 250 Н/м
В данном примере максимальная сила, действующая на кабельную скобу (с учетом расстояния между центрами крепежных отверстий, равного 0,6 м) = 63 750 Н
Если данное максимальное значение силы, действующей на каждую кабельную скобу, использовалось в качестве основы для расчета значения ip с учетом расстояния между центрами крепежных отверстий, равного 0,3 м, тогда значение Ft должно равняться 212 500 Н/м
В этом случае значение ip будет составлять 212,13 кА — ЭТО ЧРЕЗМЕРНО ВЫСОКОЕ ЗНАЧЕНИЕ! При условии, что расстояние между центрами крепежных отверстий составляло 300 мм, было достигнуто значение всего 190 кА в условиях физического испытания. Это указывало на то, что кабельная скоба уже выдерживает близкую к предельной нагрузку.
Уточняющий расчет:
При расчете величины ip используйте только величину Ft (максимальная сила, действующая на каждую кабельную скобу), полученную по результатам испытаний при коротких расстояниях между центрами крепежных отверстий, а не при тех расстояниях, которые будут использоваться в реальных условиях. Проводить расчеты в обратном порядке опасно, поскольку это будет противоречить учтенному в стандартных расчетах показателю безопасности, что приведет к получению нереалистичных значений ip.
С целью максимально точного расчета и наибольшей безопасности конструкции CMP рекомендует использовать данные, полученные в результате испытаний CMP кабельных скоб, закрепленных на максимально близком (и наименьшем) расстоянии до целевых центров крепежных отверстий для расчета значения ip, например:
Если скобы необходимо крепить на расстоянии 500 мм, в качестве основного для расчета значения ip используйте показатель силы, рассчитанный для расстояния между центрами крепежных отверстий в 300 мм, полученный в результате испытания CMP.
Если скобы необходимо крепить на расстоянии 900 мм, в качестве основного для расчета значения ip используйте показатель силы, рассчитанный для расстояния между центрами крепежных отверстий в 600 мм, полученный в результате испытания CMP.
Максимальная сила тока для кабеля
Для ремонта старой проводки или прокладки новой нужно подобрать кабель нужного сечения, для того чтобы он выдерживал предполагаемую нагрузку.
Если старая проводка вышла из строя нужно её заменить, но прежде чем менять на аналогичную, узнайте, почему произошла проблема со старой. Возможно, что было просто механическое повреждение, или изоляция пришла в негодность, а еще более весомой проблемой является – выход из строя проводки из-за превышения допустимой нагрузки.
Чем отличается кабельная продукция, какие основные характеристики?
Начнем с того, что определяется, какое напряжение в сети, в которой будут работать кабеля. Для бытовых сетей часто применяются кабеля и провода типа ВВГ, ПУГНП (только он запрещен современными требованиями ПУЭ из-за больших допусков по сечению при производстве, до 30%, и допустимой толщине изолирующего слоя 0.3мм, против 0.4 в ПУЭ), ШВВП и другие.
Если отойти от определений провод от кабеля отличается минимально, в основном по определению в ГОСТе или ТУ по которому он производится. Ведь на рынке есть большое количество проводов с 2-3 жилами и двумя слоями изоляции, например тот же ПУГНП или ПУНП.
Допустимое напряжение определяется изоляцией кабеля
Для выбора кабеля кроме напряжения принимают во внимание и условия, в которых он будет работать, для подключения движущегося инструмента и оборудования он должен быть гибким, для подключения неподвижных элементов, в принципе, все равно, но лучше предпочесть кабель с монолитной жилой.
Решающим фактором при покупке является площадь поперечного сечения жилы, она измеряется в мм2, от неё и зависит способность проводника выдерживать длительную нагрузку.
Что влияет на допустимый ток через кабель?
Для начала обратимся к основам физики. Есть такой закон Джоуля-Ленца, он был открыт независимо друг от друга двумя ученными Джеймсом Джоулем (в 1841) и Эмилием Ленцом (в 1842), поэтому и получил двойное название. Так вот этот закон количественно описывает тепловое действие электрического тока протекающего через проводник.
Если выразить его через плотность тока получится такая формула:
Расшифровка: w – мощность выделения тепла в единице объема, вектор j – плотность тока через проводник измеряется в Амперах на мм2. Для медного провода принимают от 6 до 10 А на миллиметр площади, где 6 – рабочая плотность, а 10 кратковременная. вектор E – напряженность электрического поля. σ – проводимость среды.
Так как проводимость обратно пропорциональна сопротивлению: σ=1/R
Если выразить закон Джоуля-Ленца через количество теплоты в интегральной форме, то:
Таким образом, dQ – количество теплоты, которое выделится за промежуток времени dt в цепи, где протекает ток I, через проводник сопротивлением R.
То есть количество тепла прямо пропорционально току и сопротивлению. Чем больше ток и сопротивление – тем больше выделяется тепла. Это опасно тем, что в определенный момент количество тепла достигнет такого значения, что у проводов плавится изоляция. Вы могли замечать, что провода дешевых кипятильников ощутимо теплеют во время работы, это оно и есть.
Если выделяется мощность на кабеле, значит, падает и напряжение на его концах, подключенных к нагрузке.
В калькуляторах для расчета сечений кабеля, обычно задаются такие параметры:
- ток или мощность нагрузки;
- длина линии;
- допустимое падение напряжения (обычно в процентах);
Чем больше сопротивление – тем больше упадет напряжение и нагреется кабель, поскольку на нем выделится мощность (P=UI, где U падение напряжения на кабеле, I – ток, протекающий через него).
Все расчеты свелись к току и сопротивлению. Сопротивление проводника вычисляется по формуле:
Здесь: ρ (ро) – удельное сопротивление, l – длина кабеля, S – площадь поперечного сечения.
Удельное сопротивление зависит от структуры металла, величины удельных сопротивлений можно определить из таблицы.
В проводке в основном используются алюминий и медь. У меди сопротивление 1.68*10-8 Ом*мм2/м., а у аллюминия в 1.8 раза больше чем у меди, равняется 2.82*10-8 Ом*мм2/м. Это значит, что алюминиевый провод нагреется почти в 2 раза сильнее, чем медный при одинаковом сечении и токе. Отсюда следует, что для прокладки проводки придется покупать более толстый алюминиевый провод, к тому же жилы легко повредить.
Поэтому медные провода вытеснили с домашней проводки медные, а применение аллюминия в проводке запрещено, разрешается только применение алюминиевых кабелей для монтажа очень мощных электроустановок, потребляющих большой ток, тогда используют провод из аллюминия сечением больше 16 мм2.
Как определить сопротивление провода по диаметру жилы?
Бывают случаи, когда площадь поперечного сечения жилы не известна, поэтому можно посчитать по диаметру. Для определения диаметра монолитной жилы можно использовать штангенциркуль, если его нет, то возьмите стержень, например шариковую ручку или гвоздь, намотайте плотно 10 витков провода на него, и измерьте линейкой длину получившейся спирали, разделив эту длину на 10 – вы получите диаметр жилы.
Для определения общего диаметра многопроволочной жилы, измерьте диаметр каждой жилы и умножьте на их количество.
Дальше считают поперечное сечение по этой формуле:
И вновь возвращаются к этой формуле для расчета сопротивления провода:
Как определить необходимую площадь сечения провода?
Самый простой вариант – определить площадь сечения жил по таблице. Он подходит для расчета не слишком длинных линий проложенных в нормальных условиях (с нормальной температурой окружающей среды). Также так можно подобрать провод для удлинителя. Обратите внимание, что в таблице указаны сечения при определенном токе и мощности в однофазной и трёхфазной сети для аллюминия и меди.
При расчете длинных линий (больше 10 метров) такой таблицей лучше не пользоваться. Нужно провести расчеты. Быстрее всего воспользоваться калькулятором. Алгоритм расчета такой:
Берут допустимые потери по напряжению (не более 5%), это значит что при напряжении в сети 220В и допустимым потерям напряжения в 5% на кабеле падение напряжения (от конца до конца) не должно превышать:
Теперь, зная ток, который будет протекать, мы может вычислить сопротивление кабеля. В двух проводной линии сопротивление умножают на 2, так как ток течет по двум проводам, при линии длиной в 10м, общая длина проводников – 20м.
Отсюда по вышеприведенным формулам вычисляют необходимое поперечное сечение кабеля.
Вы можете сделать это автоматически со своего смартфона, с помощью приложений «Мобильный электрик» и electroDroid. Только в калькуляторе задается не общая длина проводов, а именно длина линии от источника питания к приемнику электричества.
Заключение
Правильно рассчитанная проводка это уже 50% залог её успешного функционирования, вторая половина зависит от правильности монтажа. Следует учитывать все особенности проводки, максимальную потребляемую мощность всеми потребителями. При этом введите запас по допустимому току на 20-40% «на всякий случай».
Ранее ЭлектроВести писали, что практически все современное оборудование работает на газе, угле или жидком топливе или же – на электричестве. А значит, требуются надежные системы подачи электроэнергии: классические шнур-розетка-вилка. А такие огромные сооружения, как плавающие ветряные турбины, нефтяные вышки и платформы, подводные генераторы и сейсмологические учетные устройства, работающие далеко от берега, тем более нуждаются в постоянном электрическом питании. И с этой целью были созданы самые большие, на сегодняшний день, электрическая вилка и розетка.
Подбор сечения силового кабеля в аудиосистеме автомобиля.
Работу электрической схемы постоянного тока можно легко объяснить, применяя аналогию движения электронов по проводнику движению воды по трубопроводу. Электрическая цепь ведет себя аналогично гидравлической системе подачи воды под
давлением. Электрический провод, по которому движутся электроны — это труба, по которой течет вода. Аккумуляторная батарея аналогична водонапорной башне (или насосу), которая создает давление в системе. Разность давления воды между начальной
точкой трубы, где установлен насос и ее конечной точкой заставляет течь воду по трубопроводу. Точно так же, разность потенциалов (напряжение) на концах проводника обеспечивает движение электронов по проводу. Количество воды, протекающее за
определенный промежуток времени через сечение трубы называют расходом воды в трубе (литр/сек). Аналогично расходу воды, сила тока в проводнике определяется как количество электрического заряда, переносимого за определенный промежуток времени
через сечение провода. Если сила тока со временем не меняется, то такой ток называют постоянным. Прение, возникающее в процессе движения электронов о кристаллическую решетку проводника принято называть сопротивлением проводника. Сопротивление
измеряется в Омах. По закону Ома для участка цепи сопротивление равно отношению напряжения к силе тока.
1 Ом = 1 Вольт /1 Ампер
Сопротивление проводника вызывает его нагрев. Поэтому правильный выбор сечения кабеля является очень важной задачей. Чем больше сечение кабеля, тем меньше его сопротивление, и тем больший ток он сможет пропустить. Следует помнить,
что с увеличением длины проводника сопротивление растет.
Автомобильные аудиосистемы потребляют большой ток, особенно если устанавливается несколько усилителей мощности. Напряжение в энергосистеме автомобиля постоянно и равно 12В, поэтому для обеспечения высокой мощности аудиосистема вынуждена потреблять большое количество тока. Усилитель является самым энергопотребляющим компонентом в звуковых системах. Поэтому для расчета
сечения силового кабеля нам прежде всего необходимо будет определить максимальную мощность усилителя. Для начала надо в спецификации к усилителю прочитать его среднюю мощность при 2 Ом или 4 омной нагрузке. Допустим, что мы имеем четырехканальный усилитель, RMS мощность которого равна 35 Вт на канал. Полная RMS мощность равна произведению количества каналов на мощность одного канала:
35 Вт х 4 = 140 Вт. (средняя мощность)
Зная, что средняя (RMS) мощность соответствует приблизительно 50% эффективности усилителя, то для определения максимальной мощности надо удвоить ее значение:
140 Вт х 2
280 Вт. (максимальная мощность)
Из физики известно, что мощность равна произведению силы тока на напряжение. Следовательно, сила тока равна:
Ампер = Ватт/Вольт.
Напряжение в сети автомобиля известно и равно приблизительно 13В. Значит, ток потребляемый нашим усилителем будет равен:
280 Вт /13 В = 21.53 A
Подобные вычисления следует произвести для каждого усилителя в аудиосистеме. После необходимо определить длину силового кабеля от аккумулятора до распределительного блока, а затем от этого блока до каждого компонента системы. Зная потребляемую силу тока и длину кабеля, обращаемся к специальной таблице подбора сечения и длины кабеля и подбираем необходимый калибр кабеля. Данные в таблице учитывают тот факт, что силовой кабель, сечение которого подобрано удовлетворяет не только потреблению тока усилителем, но и рассчитано на питание остальных компонентов аудиосистемы. Сечение заземляющих кабелей должно быть такое же, как и сечение питающих проводов. Плюсовой провод и заземление желательно тянуть от аккамулятора, если это невозможно по какой-то причине, заземлять ВСЕ компоненты системы нужно в одной точке, дабы исключить разность потенциалов между компонентами.
Расчет номинала предохранителя.
Расстояние от плюсовой клеммы аккумулятора до потребителя в основном превышает 40 сантиметров, поэтому устанавливаем защитный предохранитель, естественно не далее 40 сантиметров от аккумуляторной клеммы, а лучше устанавливать главный предохранитель возможно ближе к плюсовой клемме аккумулятора. Его назначение, защитить питающий кабель от возгорания, например в случае аварии автомобиля (ДТП). Повреждение автомобиля может быть пустяковым, но пережатый питающий кабель приведет к короткому замыканию, возгоранию и уничтожению автомобиля. Номинал главного предохранителя определяется МАКСИМАЛЬНО возможным номиналом предохранителя для данного сечения кабеля. Например для кабеля сечением 2 GA МАКСИМАЛЬНО возможный номинал предохранителя составляет 150 Ампер. А можно поставить предохранитель номиналом, допустим 100 Ампер, 80Ампер или 50 Ампер? Да можно! Можно поставить любой предохранитель, при одном условии, что он НЕ БУДЕТ превышать номинал 150 Ампер (иначе смысл этого предохранителя пропадает). Общий максимальный ток, который может быть потреблен к примеру двумя усилителями (моноблок 80А и двухканальник 30А), составляет 110 Ампер, так что если поставить главный предохранитель номиналом 100 Ампер, существует вероятность того, что он будет перегорать на пиках максимальной громкости. Исходя из вышеизложенного, я рекомендую выбрать предохранитель номиналом 150 Ампер, в случае нештатной ситуации он сработает.
Таблица и формулы расчета максимальных длин медных кабелей (проводов) в метрах в зависимости от мощности электромотора (электродвигателя), тока и сечения провода.
Таблица и формулы расчета максимальных длин медных кабелей (проводов) в метрах в зависимости от мощности электромотора (электродвигателя), тока и сечения провода.
Данные методички по скважинным насосам Грундфос для 3% падения напряжения в подводке — вполне универсальные.
1х230В. Таблица для максимальных длин медных кабелей (проводов) в метрах в зависимости от мощности электромотора (электродвигателя), тока и сечения провода
Двигатель | Сечение медного кабеля | |||||
кВт | In, A | 1,5 мм 2 | 2,5 мм 2 | 4 мм 2 | 6 мм 2 | 10 мм 2 |
0.37 | 4.0 | 111 | 185 | 295 | 440 | 723 |
0.55 | 5.8 | 80 | 133 | 211 | 315 | 518 |
0.75 | 7.5 | 58 | 96 | 153 | 229 | 377 |
1.1 | 7.3 | 48 | 79 | 127 | 190 | 316 |
1.5 | 10.2 | 34 | 57 | 92 | 137 | 228 |
2.2 | 14 | 43 | 68 | 102 | 169 |
Для расчета максимальной длины медного кабеля при напряжении питания 1х230В также можно воспользоваться следующей формулой:
- L = (U*ΔU) / (In * 2 * 100 * (Cosφ * p/q + Sinφ * XL)) (м)
- U — номинальное напряжение, В
- ΔU — падение напряжения, % (ΔU = 3%)
- I — номинальный ток электродвигателя, А
- p — удельное сопротивление, равное 0,02 Ом*мм 2 /м
- q — поперечое сечение кабеля, мм 2
- Cosφ — коэффициент мощности
- Sin 2 φ = (1- Cos 2 φ)
- XL — индуктивное сопротивление, равное 0,078 х 10 -3 Ом/м
Ниже, в таблице для 3х400В длины даны для прямого подключения. Для соединения по схеме «звезда-треугольник» допустимая длина кабеля выше в 1,73 раза, чем при прямом подключении 3х400 В
Для пересчета подключения 3х400В на другие напряжения используют формулу: L = U/400B * Ltab, где Ltab — табличная величина длины провода, м.
Пример: 500 В, Ltab = 100 м; (500 В/400 В) * 100 м = 125 м.
- Если в таблицах величину 100 м задают как максимальную длину провода, то при том же значении тока для напряжения 500 В получают максимальную длину 125 м.
- Полученная из таблиц максимальная длина провода, составившая 42 м, при том же значении тока для напряжения 380 В уменьшается до 40 м.
Для расчета максимальной длины медного кабеля при напряжении питания 3х400В также можно воспользоваться следующей формулой: