Ufass.ru

Стройка и ремонт
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатор тока на lM317 для светодиодов

Стабилизатор тока на lM317 для светодиодов

Источники света на светодиодах получают все большее распространение, вытесняя остальных конкурентах, как в области применения индикации, так и в качестве мощных осветительных приборов. Для стабильной и долговечной работы источников на светоизлучающих диодах требуется соблюдение ряда требований.

ИМС LM317

Источник тока или напряжения?

Большинству знакомо понятие стабилизатора напряжения, то есть устройства, которое обеспечивает выдачу стабильного напряжения, вне зависимости от условий: мощности нагрузки, температуры, величины входного напряжения. Для питания источников освещения на светодиодах необходимо обеспечить подачу стабильного тока через диод. Это связано с тем, что полупроводниковые элементы обладают нелинейной зависимостью тока через p-n переход. Изменение внешних условий влияет на величину протекающего тока, который может выйти за допустимые пределы. Поэтому понятие стабилизатора напряжения для светодиодов не имеет смысла. Особенно важно обеспечить стабилизацию тока для светодиодов в авто, где напряжение не отличается стабильностью, а диапазон изменения температуры очень широк.

Именно перечисленные условия требуют применения источника тока. В простейшем случае можно довольствоваться простым ограничением максимального значения при помощи ограничительного резистора, но это не обеспечивает стабильной яркости и неэффективно с энергетической точки зрения.

На заметку. Более рациональным будет питание стабилизированным значением с использованием схемотехнических решений источников тока на малогабаритных электронных компонентах.

Схемотехническое решение

Развитие современной микроэлектроники позволяет создавать устройства с требуемыми параметрами с использованием минимума элементов. Довольно хорошо зарекомендовали себя устройства токовых генераторов на интегральной микросхеме LM317. Вообще данная микросхема представляет собой интегральный стабилизатор напряжения, но некоторые изменения в стандартной схеме включения, кстати, оговоренные в технической документации, позволяют использовать данную ИМС в качестве источника тока, в том числе для питания светодиодов.

Параметры микросхемы следующие:

  • Напряжение – 1.2-37В;
  • Ток через ИМС – до 2А в случае использования LM317T.

Различными производителями выпускается множество разновидностей данного стабилизатора, но разница в стоимости и габаритах для минимальной и максимальной мощностей ничтожна, поэтому есть смысл использовать максимально доступную мощность, запас которой никогда не помешает.

Важно! При использовании мощного стабилизатора тока для светодиодов при нагрузке, близкой к максимальной, обязательно использование радиатора, который позволит отбирать выделяемое интегральной микросхемой тепло.

Итак, самый простой, но надежно работающий стабилизатор тока на микросхеме lm317 для светодиодов представлен ниже.

Простейший стабилизатор

В данной схеме микросхема имеет лишь один резистор во внешней обвязке. Именно при помощи его задается значение выходного параметра. Делается это по формуле:

Данный вариант стабилизатора работает в диапазоне значений от 0.01 до 1.5А. Верхний предел ограничивается мощностью микросхемы. Мощность, которая рассеивается на резисторе, может составлять несколько ватт при максимальном токе. Более точно она определяется из выражения:

Важно! При значениях более 0.3А применение радиатора охлаждения для микросхемы обязательно!

Добавив в схему всего два элемента: мощный транзистор и резистор, можно поднять выходной ток до 10А.

Мощный стабилизатор

В приведенной схеме применяется мощный составной транзистор КТ825 с любой буквой. Резистор R2 выполняет ту же функцию, что и в предыдущей схеме, и рассчитывается точно так же. Поскольку по нему протекает высокий ток, а значение сопротивления малое, то следует использовать проволочный. Резистор R1 задает смещение на базе транзистора и должен иметь рассеиваемую мощность 0.25-0.5Вт.

Читайте так же:
Можно ли заряжать светящиеся кроссовки от розетки

В обеих схемах напряжение питания источника (входное напряжение) может составлять от 3 до 38В. Для поддержания необходимого тока во всем диапазоне нагрузок напряжение питания следует обеспечивать приближенное к максимальному значению.

Пример. Пусть задано 20мА. Тогда при одном подключенном диоде напряжение на выходе будет составлять около 2-3В (в зависимости от типа светодиода). Если включить два последовательных светодиода, то для обеспечения необходимого тока 20мА схема выдаст уже ровно в два раза большее напряжение. Аналогичные подсчеты можно произвести для любого количества элементов.

Необходимое входное напряжение можно получить при помощи понижающего трансформатора с мостовым выпрямителем и конденсатором фильтра.

Выпрямитель

Диоды должны быть рассчитаны на необходимый ток, а емкость конденсатора нужно брать порядка нескольких тысяч микрофарад.

Важно! Рабочее напряжение конденсатора должно превышать напряжение питания примерно в полтора раза, то есть в данном случае оно должно быть не менее 50В.

Автомобиль имеет напряжение бортовой сети не более 14В. Поскольку частота пульсаций здесь выше, чем в домашней сети, а амплитуда невысока, то емкость конденсатора может быть меньше. Также и рабочее напряжение может составлять 25В. Разумеется, выпрямительный мост здесь не нужен.

Как видно, сделать стабилизатор тока для светодиодов своими руками – задача несложная. Важны аккуратность, внимательность и минимальные навыки работы с электроникой.

Видео

LED. LM317 в стабилизаторе тока светодиодов. Или как надежно запитать светодиоды чтобы стабильно работали, не моргали и не сгорали.

Всё больше распространяется мода на светодиоды, в настоящее время многие сами ставят диодные ленты (для дневного света и многого другого ).
Наткнулся на следующую статью, которой и хочу со всеми поделиться:
"В настоящее время в нашу жизнь интенсивно внедряются светодиоды. Основная проблема оказывается как из запитать. Дело в том, что главным параметром для долговечности светодиода является не напряжение его питание, а ток который по нему течет. Например, красные светодиоды по напряжению питания могут иметь разброс от 1.8 вольта до 2,6, белые от 3,0 до 3,7 вольта. Даже в одной партии одного производителя могут встречаться светодиоды с разным рабочим напряжением. Нюанс заключается в том, что светодиоды изготовленные на основе AlInGaP/GaAs (красные, желтые, зеленые — классические) довольно хорошо выдерживают перегрузку по току, а светодиоды на основе GaInN/GaN (синие, зеленые (сине-зеленые), белые) при перегрузке по току например в 2 раза живут … часа 2-3! Так, что если желаете чтобы светодиод горел и не сгорел в течении ходя бы 5 лет позаботьтесь о его питании.

Если мы устанавливаем светодиоды в цепочки (последовательное соединение) или подключаем параллельно добиться одинаковой светимости можно только если протекающий ток будет через них одинаков.

Еще хочу заострить внимание на том что светодиоды очень боятся обратного напряжения, оно очень низкое 5 — 6 вольт, импульсы обратного тока (а автомашинах) способны значительно сократить срок службы.

Значить как сделать самый простой стабилизатор тока?

Читайте так же:
Интернет кабель розетка у телевизора

Для этого берем LM317 если нужно стабилизировать ток в пределах до 1 ампера или LM317L если необходима стабилизация тока до 0,1 А. Даташит можно скачать здесь!

Так выглядят стабилизаторы LM317 с рабочим током до 1,5 А.

А так LM317L с рабочим током до 100 мА.

Для тех кто не знает Vin — это сюда подается напряжение, Vout — отсюда получаем…, а Adjust вход регулировки. В двух словах LM317 это стабилизатор с регулируемым выходным напряжением. Минимальное выходное напряжение 1,25 вольта (это если Adjust "посадить" прямо на землю) и до входного напряжения минус наши 1,25 вольта. Т.К. максимальное входное напряжение составляет 37 вольт, то можно делать стабилизаторы тока до 37 вольт соответственно.

Для того чтобы LM317 превратить в стабилизатор тока нужен всего 1 резистор!

Схема включения выглядит следующим образом:

С формулы внизу рисунка очень просто рассчитать величину резистора для необходимого тока. Т.е сопротивление резистора равно — 1,25 разделить на требуемый ток. Для стабилизаторов до 0,1 ампера мощность резистора 0,25 W вполне годиться. На токи от 350 мА до 1 А рекомендуется 2 вата. Для тех кто не хочет считать привожу таблицу резисторов на токи для широко распространенных светодиодов.

Ток (уточненный ток для резистора стандартного ряда) Сопротивление резистора Примечание
20 мА 62 Ом стандартный светодиод
30 мА (29) 43 Ом "суперфлюкс" и ему подобные
40 мА (38) 33 Ом "суперфлюкс" и ему подобные
80 мА (78) 16 Ом четырехкристальные
350 мА (321) 3,9 Ом одноватные
750 мА (694) 1,8 Ом трехватные
1000 мА (962) 1,3 Ом 5 W

А теперь пример с учетом всего выше сказанного. Сделаем стабилизатор тока для белых светодиодов с рабочим током 20 мА, условия эксплуатации автомобиль (сейчас так моден световой тюннинг…).

Для белых светодиодов рабочее напряжение в среднем равно 3,2 вольта. В автомашине (легковой) бортовое напряжение колеблется (в опять же среднем) от 11,6 вольт в режиме работы от аккумулятора и до 14,2 вольта при работающем двигателе. Для российских машин учтем выбросы в "обратке" (и в прямом направлении до 100 ! вольт).

Включить последовательно можно только 3 светодиода — 3,2*3 = 9,6 вольта, плюс 1,25 падение на стабилизаторе = 10,85. Плюс диод от обратного напряжения 0,6 вольта = 11,45 вольта.

Полученное значение 11,45 вольта ниже самого низкого напряжения в автомобиле — это хорошо! Это значит на выходе будет всегда наши 20 мА независимо от напряжения в бортовой сети автомобиля. Для защиты от выбросов положительной полярности поставим после диода супрессор на 24 вольта.

P.S. Подбирайте количество светодиодов так чтобы на стабилизаторе оставалось как можно меньше напряжения (но не меньше 1,3 вольта), это надо для уменьшения рассеиваемой мощности на самом стабилизаторе. Это особенно важно для больших токов. И не забудьте, что на токи от 350 мА и выше LMка потребует радиатор.

В принципе супрессор для дешевых светодиодов можно и не ставить, но диод для в автомобиле обязателен! Рекомендую его ставить даже если вы просто подключаете светодиоды с гасящим резистором.

Читайте так же:
Датчик движения вместо выключателя свет

Как рассчитывать сопротивление резистора для светодиодов я думаю описывать излишне, но если надо пишите на форуме.

Еще забыл: — по схеме, если непонятно! На К1 подаем плюс "+", а на К2 минус (на шасси автомашины садим)."

lm317 — регулируемый стабилизатор напряжения и тока

Стабилизатор тока для светодиодов применяется во многих светильниках. Как и всем диодам, LED присуще нелинейная вольт-амперная зависимость. Что это значит? При повышении напряжения, сила тока медленно начинает набирать мощь. И только при достижении порогового значения, яркость светодиода становится насыщенной. Однако если ток не перестанет расти, то лампа может сгореть.

Правильная работа LED может быть обеспечена только благодаря стабилизатору. Эта защита необходима еще и по причине разброса пороговых значений напряжения светодиода. При подключении по параллельной схеме лампочки могут просто на просто сгореть, так как им приходится пропускать недопустимую для них величину тока.

Виды стабилизирующих устройств

По способу ограничения силы тока выделяются устройства линейного и импульсного типа.

Так как напряжение на светодиоде – неизменная величина, то стабилизаторы тока часто считают стабилизаторами мощности LED. Фактически последняя прямо пропорциональна изменению напряжения, что характерно для линейной зависимости.

Линейный стабилизатор нагревается тем больше, чем больше прилагается к нему напряжения. Это его главный недочёт. Преимущества данной конструкции обусловлены:

  • отсутствием электромагнитных помех;
  • простотой;
  • низкой стоимостью.

Более экономичными устройствами являются стабилизаторы на основе импульсного преобразователя. В этом случае мощность прокачивается порционно – по мере необходимости для потребителя.

Схемы линейных устройств

Самая простейшая схема стабилизатора – это схема, построенная на основе LM317 для светодиода. Последний являются аналогом стабилитрона с определенным рабочим током, который он может пропускать. Учитывая малую силу тока можно собрать простой аппарат самостоятельно. Наиболее простой драйвер светодиодных ламп и лент собирают именно таким способом.

Микросхема LM317 уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На её основе можно собрать регулируемый блок питания, светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, модуль работает сразу, настройки не требуется.

lm317 стабилизатор тока

Интегральный стабилизатор LM317 как никакой другой подходит для создания несложных регулируемых блоков питания, для электронных устройств с разными характеристиками, как с регулируемым выходным напряжением, так и с заданными параметрами нагрузки.

Основное назначение это стабилизация заданных параметров. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.

Выпускаются LM317 в монолитных корпусах, исполненных в нескольких вариациях. Самая распространённая модель TO-220 с маркировкой LM317Т.

Каждый вывод микросхемы имеет свое предназначение:

  • ADJUST. Ввод для регулирования выходного напряжения.
  • OUTPUT. Ввод для формирования выходного напряжения.
  • INPUT. Ввод для подачи питающего напряжения.

lm317 стабилизатор тока

Технические показатели стабилизатора:

  • Напряжение на выходе в пределах 1,2–37 В.
  • Защита от перегрузки и КЗ.
  • Погрешность выходного напряжения 0,1%.
  • Схема включения с регулируемым выходным напряжением.

Мощность рассеяния и входное напряжение устройства

Максимальная «планка» входного напряжения должна быть не более заданной, а минимальная – выше желаемой выходной на 2 В.

Читайте так же:
Выключатель сетевого фильтра с подсветкой схема подключения

Микросхема рассчитана на стабильную работу при максимальном токе до 1,5 А. Это значение будет ниже, если не применять качественный теплоотвод. Максимально допустимое рассеивание мощности без последнего равно примерно 1,5 Вт при температуре окружающей среды не более 30 0 С.

При установке микросхемы требуется изоляция корпуса от радиатора, к примеру, с помощью слюдяной прокладки. Также эффективный отвод тепла достигается путём применения теплопроводной пасты.

Краткое описание

Коротко описать достоинства радиоэлектронного модуля LM317, применяемого в стабилизаторах тока, можно так:

  • яркость светового потока обеспечивается диапазоном выходного напряжения 1, – 37 В;
  • выходные показатели модуля не зависят от частоты вращения вала электродвигателя;
  • поддерживание выходного тока до 1,5 А позволяет подключать несколько электроприёмников;
  • погрешность колебаний выходных параметров равна 0,1% от номинального значения, что является гарантией высокой стабильности;
  • имеется функция защиты по ограничению тока и каскадного отключения при перегреве;
  • корпус микросхемы заменяет землю, поэтому при внешнем креплении уменьшается количество монтажных кабелей.

Схемы включения

Безусловно, наипростейшим способом токового ограничения для светодиодных ламп станет последовательное включение добавочного резистора. Но данное средство подходит лишь только для маломощных LED.

Простейший стабилизированный блок питания

Чтобы сделать стабилизатор тока потребуется:

  • микросхемка LM317;
  • резистор;
  • монтажные средства.

Собираем модель по нижеприведенной схеме:

Модуль можно применять в схемах разных зарядных устройств либо регулируемых ИБ.

Блок питания на интегральном стабилизаторе

Этот вариант более практичный. LM317 ограничивает потребляемый ток, который задается резистором R.

Помните, что максимально допустимое значение тока, которое нужно для управления LM317, составляет 1,5 А с хорошим радиатором.

Схема стабилизатора с регулируемым блоком питания

Ниже изображена схема с регулируемым выходным напряжением 1.2–30 В/1,5 А.

Переменный ток преобразуется в постоянный с помощью моста-выпрямителя (BR1). Конденсатор С1 фильтрует пульсирующий ток, С3 улучшает переходную характеристику. Это означает, что стабилизатор напряжения может отлично работать при постоянном токе на низких частотах. Выходное напряжение регулируется ползунком Р1 от 1.2 вольта до 30 В. Выходной ток составляет около 1,5 А.

Подбор резисторов по номиналу для стабилизатора должен осуществляться по точному расчету с допустимым отклонением (небольшим). Однако разрешается произвольное размещение резисторов на монтажном плате, но желательно для лучшей стабильности размещать их подальше от радиатора LM317.

Область применения

Микросхема LM317 является отличным вариантом для использования в режиме стабилизации основных технических показателей. Она отличается простотой в исполнении, недорогой стоимостью и отличными эксплуатационными характеристиками. Единственный недостаток – пороговое значение напряжения составляет лишь 3 В. Корпус в стиле ТО220 – это одна из самых доступных моделей, которая позволяет рассеивать тепло довольно хорошо.

Микросхема применима в устройствах:

  • стабилизатор тока для LED (в том числе для LED-лент);
  • Регулируемый стабилизатор напряжения для бытового назначения.

Стабилизирующая схема, построенная на основе LM317 простая, дешёвая, и в то же время надежная.

Стабилизатор тока для светодиодов

Светодиод – полупроводниковый прибор с нелинейной вольтамперной характеристикой. При незначительном изменении напряжения, ток через него может изменяться в разы. Поэтому для обеспечения надлежащего питания светодиодов требуется стабилизатор тока.

Стабилизатор тока – устройство, которое поддерживает постоянный ток в нагрузке, независимо от падения напряжения на ней. По принципу действия он может быть линейным или импульсным. Линейный стабилизатор регулирует выходные параметры за счет распределения мощности между нагрузкой и своим внутренним сопротивлением, поэтому он менее эффективен, чем импульсный. Последний же использует принцип широтно-импульсной модуляции и отдает в нагрузку ровно столько мощности, сколько нужно. При этом КПД может превышать 90%. Однако импульсный стабилизатор имеет более сложную схему и более высокую стоимость.

Читайте так же:
Какие токи держат кабеля

Рассмотрим оба варианта

Воспользуемся микросхемой LM317. На ее основе может быть построена схема линейного стабилизатора тока. Микросхема LM317 имеет три вывода и выпускается в стандартных корпусах ТО-220, ТО-263, SOT-223 и ТО-252 (D 2 PAK). Значение дифференциального напряжения между выводами Vout­ и Vin не должно превышать 40 В.

Простейшая схема линейного источника тока на LM317 изображена на рисунке 1.

Рисунок 1 – Линейный стабилизатор на LM317

Рисунок 1 – Линейный стабилизатор на LM317

Принцип работы заключается в том, что микросхема LM317 поддерживает разность потенциалов между выходом Vout и выводом Adjust на уровне 1,25 В. Получается, что, пренебрегая IAdj (его значение по data sheet не более 100 мкА), значение силы тока через нагрузку, вне зависимости от напряжения на ней, будет определяться как 1,25/R1.

Входное напряжение всегда должно быть по крайней мере на 3 В больше выходного Vout.

Корпус LM317 должен быть закреплен на радиатор, так как даже при 0,7 А и минимальной разнице входного и выходного напряжения, на микросхеме будет рассеиваться мощность 2,1 Вт.

Схема на LM317 очень проста, но очень неэффективна, и на практике может быть применена только для малых токов, в случае, когда по каким-то причинам нельзя использовать импульсный стабилизатор.

Наиболее простой и недорогой импульсный стабилизатор можно построить на основе микросхемы HV9910. Схема приведена на рисунке 2.

Рисунок 2 – Схема импульсного источника тока на HV9910

Рисунок 2 – Схема импульсного источника тока на HV9910

Схема работает следующим образом:

микросхема HV9910 при подаче питания открывает ключ Q1, через светодиоды и дроссель L1 и резистор Rcs начинает протекать ток. Когда падение напряжения на Rcs достигает значения 250 мВ, микросхема закрывает ключ и ток под действием энергии запасенной в дросселе начинает течь через диод D1. Далее процесс повторяется циклически, управляемый внутренним генератором, частота которого задается резистором RT.

Схема довольно проста и надежна, работает при значениях входного напряжения от 8 до 450 В. Кроме того, ее можно приспособить к работе от сети, поставив на входе простейший выпрямитель (диодный мост и накопительный конденсатор). Вся необходимая информация для расчета номиналов используемых компонентов приведена в data sheet производителя.

Существует еще более простая схема питания светодиодов – для этих целей можно использовать полностью интегральный стабилизатор тока (или драйвер). Примером такого драйвера может служить микросхема LDD-XXXH фирмы MeanWell. Под ХХХ зашифровано значение выходного тока, например, исполнение на 350 мА будет иметь наименование LDD-350H. Никаких дополнительных компонентов не требуется – драйвер подключается напрямую к светодиодам.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector