Ufass.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какова частота переменного тока в осветительной сети физика

Электростанция

Электроста́нция — электрическая станция, совокупность энергетических установок, оборудования и аппаратуры, используемых для преобразования природной энергии в электрическую, а также необходимые для этого сооружения и здания, расположенные на определённой территории.

В основе работы подавляющего большинства электростанций лежит принцип преобразования энергии в различных типах двигателей в механическую энергию вращения ротора электрического генератора, которая затем преобразуется в электроэнергию. Также существуют установки непосредственного преобразования энергии в электрическую, например, МГД установки, фотоэлектрические преобразователи и пр.

Наибольшее распространение получили тепловые электрические станции (ТЭС), на которых используется тепловая энергия, выделяемая при сжигании органического топлива (уголь, нефть, газ и др.). На тепловых электростанциях вырабатывается более 70 % электроэнергии на нашей планете. Это обусловлено наличием органического топлива почти во всех районах нашей планеты, возможностью его транспортировки с места добычи на электростанцию и техническим прогрессом, обеспечивающим строительство ТЭС большой мощности. Тепловые электростанции получили развитие с 80-х годов XIX века, в современном виде — с 20-х годов XX века [1] . Основными агрегатами ТЭС, преобразующими тепловую энергию горения топлива в электрическую, являются паротурбинные установки, газотурбинные установки, двигатели внутреннего сгорания, а также их комбинации.

В 50-х годах XX века появился новый тип электростанций — атомные (АЭС), использующие тепловую энергию, получаемую в реакторе за счёт поддержания цепной ядерной реакции деления ядерного топлива, главным образом, урана 235 U, 238 U и плутония 239 Pu. Дальнейшее преобразование тепловой энергии, выделившейся в ядерном реакторе, происходит аналогично ТЭС в паротурбинной установке. На основании данных Международного агентства по атомной энергии [2] и Всемирной ядерной ассоциации [3] доля мировой выработки электроэнергии на АЭС приближается к 11 %. Несмотря на то, что до сих пор полностью не разрешены вопросы размещения, переработки и захоронения ядерных отходов, а также возможного ущерба, наносимого окружающей среде авариями или нештатными ситуациями при работе АЭС, эксплуатация данного типа электростанций является относительно чистой и спасает нашу планету от выбросов большого количества парниковых газов. Согласно отчёту Мирового энергетического совета (МИРЭС) за 2020 г., атомная энергия играет важную роль в энергетике Европы и признаётся как перспективная составная часть безуглеродной энергетики [4] .

Большое значению имеют гидравлические электростанции (ГЭС), использующие энергию падения водяных потоков и вырабатывающие в настоящее время до 21 % всей электроэнергии. Преобразование энергии на ГЭС имеет то преимущество, что материальный носитель энергии — вода не уничтожается подобно органическому топливу, а сохраняется в природе. ГЭС требуют больших капитальных затрат на гидротехнические сооружения (высокие плотины и пр.), но небольших эксплуатационных расходов. Электроэнергия, вырабатываемая на ГЭС, является наиболее дешёвой [1] .

Кроме электростанций, указанных выше и обычно относимых к «традиционным», существует большое разнообразие электростанций, использующих для получения электроэнергии возобновляемые источники энергии. Например, электростанции, использующие энергию ветровых потоков — ветровые электростанции; солнечного излучения — гелиоэлектрические, или солнечные электростанции (СЭС); приливов и отливов океанической воды — приливные электростанции (ПЭС); тепловую энергию подземных термальных вод — геотермальные электростанции (ГеоТЭС); разность температур воды на поверхности и в глубине океана и другие.

Электростанции объединяются в энергетическую систему, включающую также установки, потребляющие электроэнергию, электрические линии, связывающие их с электростанциями, электрические распределительные устройства с повышающими и понижающими напряжение тока трансформаторами. Дальний транспорт электроэнергии на расстояния до тысячи километров осуществляется по линиям электропередачи (ЛЭП) высокого напряжения 100…750 кВ, ближний транспорт — по линиям электропередачи меньшего напряжения до 100 кВ.

На некоторых типах электростанций электроэнергия является не единственным видом производимой энергии. На ТЭС может применяться когенерация, или теплофикация, то есть совместная выработка тепловой и электрической энергии в теплофикационных паровых турбинах, обладающих одним или несколькими регулируемыми отборами пара, направляемого в сетевые бойлеры для нагрева сетевой воды для нужд отопления, или в турбинах с производственным отбором пара для технологических нужд расположенного рядом промышленного предприятия. Тепловые электростанции с такими турбинами получили название теплоэлектроцентралей (ТЭЦ).

Содержание

История [ править | править код ]

С начала XVIII в. на заводах и фабриках начинают использоваться поршневые паровые машины, в дальнейшем существенно улучшенные шотландским инженером-изобретателем Джеймсом Уаттом. Изобретение в 1871 г. обмотки якорей динамоэлектрических машин бельгийцем Зенобом Теофилом Граммом дало начало промышленного получения электрического тока [5] . Первой электростанцией стала гидроэлектостанция, спроектированная и построенная в 1878 г. английским инженером, бароном Уильямом Армстронгом в своём поместье Крэгсайд, Англия. Она использовала воду из озера и приводила во вращение динамо-машину фирмы Siemens. Вырабатываемое электричество применялось для освещения, отопления, горячего водоснабжения, работы подъёмной машины и различных хозяйственно-бытовых механизмов [6] .

Осенью 1881 г. в городе Годалминг, Англия была построена центральная электростанция, обеспечивающая работу уличной осветительной сети. Это случилось после того, как городские власти не смогли прийти к соглашению с газовой компанией по цене контракта на освещение города. В этот момент в городе проходила выставка системы освещения от фирмы Calder & Barrett   (англ.) русск. , которая предложила свои услуги по более низкой цене. Почётный гражданин города, мистер Пульман, владелец кожевенной фабрики R. & J. Pullman предоставил одну из двух своих водяных мельниц на реке Вэй   (англ.) русск. для размещения электрической машины. Генератор переменного тока с отдельным возбудителем постоянного тока снабжал электричеством 7 дуговых ламп, соединённых последовательно, и 40 ламп накаливания конструкции Джозефа Суона, соединённых в отдельную сеть параллельно. Установка оказалась коммерчески невыгодной и была передана в управление фирме Siemens Brothers   (англ.) русск. , а потом и вовсе закрыта в 1884 году [7] .

12 января 1882 г. в Лондоне заработала первая в мире общественная угольная тепловая электростанция — электрическая осветительная станция Эдисона ( Edison Electric Light Station   (англ.) русск. ), построенная по проекту американского изобретателя Томаса Эдисона, организованного Эдвардом Джонсоном. Котел фирмы Babcock & Wilcox вырабатывал пар для работы паровой машины мощностью 125 л. с. (93 кВт), которая вращала 27-тонный электрический генератор постоянного тока. Предприятие Эдисона снабжало электричеством заказчиков, расположенненых вдоль Холборнского виадука. Первоначально оно обеспечивало работу около тысячи лампочек в 16 свечей, затем их количество быстро возросло до 3000. Среди потребителей электроэнергии были такие, как церковь City Temple   (англ.) русск. , здание центрального уголовного суда Олд-Бейли. Линии электропередач от электростанции к заказчикам были уложены в систему многочисленных дренажных каналов Холборнского виадука. Эдисон полагал, что лучшим решением была бы их подземная прокладка, однако это бы потребовало раскопки улиц города, и на тот момент действовало сильной лобби со стороны газовых компаний, которые держали контракты на освещение улиц. Ещё одним важным заказчиком был главпочтамт Лондона, но до него нельзя было дотянуться дренажными каналами виадука, поэтому Эдвардом Джонсоном была предложена идея — проложить кабель над Viaduct Tavern   (англ.) русск. вдоль улицы Newgate   (англ.) русск. . Несмотря на то, что схема электроснабжения Холборнского виадука была техническим успехом Эдисона, через 2 года электростанция закрылась, не выдержав конкуренции со стороны газовых компаний [8] .

Читайте так же:
Как подключить выключатель света через розетку

В сентябре 1882 г. в Нью-Йорке, на Перл-стрит Эдисоном была построена угольная электростанция Pearl Street Station   (англ.) русск. для освещения электричеством Нижнего Манхэттена. Первоначально на станции были установлены шесть динамо-машины постоянного тока, которые приводились сделанными на заказ высокооборотистыми паровыми машинами Porter-Allen, вырабатывающие 175 л. с. при частоте вращения 700 об/мин [9] . Эти машины оказались ненадёжными из-за чувствительной системы управления, поэтому они были заменены на двигатели фирмы Armington & Sims Engine Company, которые лучше годились для вращения динамо-машин Эдисона [10] . К 1884 г. электростанция обеспечивала 508 потребителей с 10164 лампами накаливания [11] . Электростанция работала до 1890 г., пока не была уничтожена пожаром. Единственная сохранившаяся после пожара динамо-машина сейчас экспонируется в Музее Форда, в городе Детройт, штат Мичиган, США [12] .

В 1884 г. американский инженер и предприниматель Джордж Вестингауз начал развивать собственную систему постоянного тока для освещения частных домохозяйств, для чего нанял на работу американского физика Уильяма Стэнли младшего. В 1885 г. Вестингауз прочитал в английском техническом журнале Engineering о новых европейских системах переменного тока [13] . Переменный ток имел преимущество перед постоянным, поскольку позволял более выгодно транспортировать электроэнергию на большие расстояния, используя повышающие и понижающие трансформаторы напряжения. Работая вместе с Николой Теслой, Вестингауз развивал свою сеть переменного тока: в 1885 г. он закупил трансформатор Гауларда-Гиббса и генератор переменного тока фирмы Сименс и начал свои эксперименты в Питтсбурге. В 1886 г. Уильям Стэнли совместно с Вестингаузом установили в городе Great Barrington   (англ.) русск. , штат Массачусетс линию электропередачи, которая передавала электроэнергию от генератора гидроэлектростанции с напряжением 500 В, через понижающий трансформатор в осветительную сеть 100 В, снабжающую частные компании и домохозяйства.

Изобретение в 1884 г. инженером и изобретателем англо-ирландского происхождения, Чарльзом Парсонсом паровой турбины обеспечило возможность строить более мощные и эффективные тепловые установки для тепловых электростанций. В 1892 г. паровые турбины считались наилучшей альтернативой для применения на ТЭС по сравнению с паровой машиной, поскольку обладали большей частотой вращения, были компактнее и позволяли более стабильно регулировать частоту тока при параллельной работе нескольких генераторов на общую сеть [14] . К 1905 г. паровые турбины полностью вытеснили паровые машины на крупных тепловых электростанциях.

Изначально линии электропередачи работали на разной частоте электрического тока в зависимости от типа нагрузки. Для работы осветительной сети требовался ток более высокой частоты, для работы тяговых устройств подвижного состава железной дороги и мощных электродвигателей был предпочтительнее ток низкой частоты. После введения унификации частоты переменного тока в энергосистеме экономические показатели работы электростанций улучшились: одна электростанция, снабжающая электроэнергией крупное предприятие, могла снабжать электроэнергией пригородные электропоезда во время часа пик, а затем служить для работы осветительной сети города вечером, что увеличивало значение коэффициента использования установленной мощности и уменьшало себестоимость производства электроэнергии.

В течение первых десятилетий XX в. электростанции становились крупнее, переходили на более высокие параметры свежего пара для увеличения экономичности, происходило объединение электростанций в общую энергосистему — это приводило к повышению надёжности энергоснабжения и уменьшению стоимости электроэнергии. Применение высоковольтных линий электропередачи сделало возможным снабжение удалённых городов электроэнергией от ГЭС, которые строились на водопадах. Использование паровых турбин на ТЭС позволило увеличить установленную мощность электростанций, поскольку турбогенераторы больше не были ограничены максимально возможной мощностью ремённой передачи или частотой вращения относительно тихоходных паровых двигателей. Первенство в строительстве центральных электростанций тех лет связывают с именами Джорджа Вестингауз и Сэмюэла Инсулла в США, Ферранти и Чарльза Хестермана Мерца в Великобритании и многих других [15] .

Классификация [ править | править код ]

Большинство электростанций, будь то гидроэлектростанции, тепловые (АЭС, ТЭС и прочие) или ветроэлектростанции, используют для своей работы энергию вращения вала генератора.

Что показывает вольтметр, или математика розетки

Сегодня я ненадолго отступлю от своей обычной темы о визуальном программировании контроллеров и обращусь к теме измерений напряжения прямо в ней, в розетке!

Родилась эта статья из дискуссий за чаем, когда разразился спор среди «всезнающих и всеведающих» программистов о том, чего многие из них не понимают, а именно: как измеряется напряжение в розетке, что показывает вольтметр переменного напряжения, чем отличается пиковое и действующие значения напряжений.

Скорее всего, это статья будет интересна тем, кто начинает творить свои устройства. Но, возможно, поможет и кому-то опытному освежить память.

В статье рассказано о том, какие напряжения есть в сети переменного тока, как их измеряют и о том, что следует помнить при проектировании электронных схем.
Всему дано краткое и упрощённое математическое обоснование, чтобы было ясно не только «как», но и «почему».

Кому не интересно читать про интегралы, ГОСТы и фазы — могут сразу переходить к заключению.

Вступление

Когда люди начинают говорить о напряжении в розетке, очень часто стереотип «в розетке 220В» скрывает от их взора реальное положение дел.

Начнем с того, что согласно ГОСТ 29322-2014, сетевое напряжение должно составлять 230В±10% при частоте 50±0,2Гц (межфазное напряжение 400В, напряжение фаза-нейтраль 230В). Но в том же ГОСТ имеется примечание: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».

Согласитесь, что это уже совсем не то однозначное «в розетке 220В», к которому мы привыкли. А когда речь начинает идти о «фазном», «линейном», «действующем» и «пиковом» напряжениях — вообще каша получается знатная. Так сколько же вольт в розетке?

Чтобы ответить на этот вопрос начнем с того, как измеряется напряжение в сети переменного тока.

Как измерять переменное напряжение?

Прежде, чем углубиться в дебри цепей переменного тока и напряжения, вспомним школьную физику цепей тока постоянного.

Цепи постоянного тока — вещь простая. Если мы возьмем некоторую активную нагрузку (пусть это будет обычная лампа накаливания, как на рисунке) и воткнем ее в цепь постоянного тока, то все, что происходит в нашей цепи будет характеризоваться всего двумя величинами: напряжением на нагрузке U и током, протекающим через нагрузку I. Мощность, которая потребляется нагрузкой однозначно вычисляется по формуле, известной со школы: .

Читайте так же:
Кабель провод пвс 2х1 5

Или, если учесть, что по закону Ома , то мощность P, потребляемую нагрузкой-лампочкой, можно вычислить по формуле .

С переменным напряжением все куда сложнее: в каждый момент времени — оно может иметь разное мгновенное значение. Следовательно, в разные моменты времени, на нагрузке, подключенной к источнику переменного напряжения (например, на лампе накаливания, воткнутой в розетку) будет выделяться разная мощность. Это очень неудобно с точки зрения описания электрической цепи.

Но нам повезло: форма напряжения в розетке синусоидальная. А синусоида, как известно, полностью описывается тремя параметрами: амплитудой, периодом и фазой. В однофазных сетях (а обычная розетка с двумя дырочками именно и есть однофазная сеть) про фазу можно забыть. На рисунке подробно показаны два периода сетевого однофазного напряжения. Того самого, что в розетке.

Рассмотрим, что означают все эти буковки на рисунке.

Период T — это время между двумя соседними минимумами или соседними максимумами синусоиды. Для осветительной сети РФ этот период составляет 20 миллисекунд, что соответствует частоте 50Гц. Частота колебаний напряжения электрической сети выдерживается очень точно, до долей процента.

Очевидно, что в любых двух точках синусоиды, отстоящих друг от друга на целое число периодов, напряжения всегда равны между собой.

Амплитуда Um — это максимальное напряжение, пик синусоиды. Про действующее напряжение поговорим чуть ниже.

Напряжение в розетке (или однофазной сети) описывается формулой

где t — текущий момент времени, Um — амплитуда (или пиковое значение) напряжения, T — период сетевого напряжения.

Если с однофазным переменным напряжением более или менее все ясно, то попробуем посчитать мощность, которая выделяется на нашей любимой лампе накаливания, при втыкании ее прямо в розетку.

Так как лампа накаливания является активной нагрузкой (а это значит, что ее сопротивление не зависит от частоты напряжения и тока), то мгновенная мощность, выделяемая на лампе накаливания, воткнутой в розетку, будет вычисляться по формуле

где t — текущий момент времени, а R — сопротивление лампы накаливания при нагретой спирали. Зная амплитуду переменного напряжения Um, можно записать:

Понятно, что мгновенная мощность — неудобный параметр, да и на практике не особо нужный. Поэтому практически обычно применяется мощность, усредненная за период.
Именно усредненная мощность указана на лампочках, нагревателях и прочих бытовых утюгах.

Рассчитывается усредненная мощность в общем случае по формуле:

А для нашей синусоиды — по гораздо более простой формуле:

Можете сами подставить вместо функцию и взять интеграл, если не верите.

Не думайте, что про мощность я вспомнил просто так, из вредности. Сейчас поймете, зачем она нам была нужна. Переходим к следующему вопросу.

Что же показывает вольтметр?

Для цепей постоянного тока, тут все однозначно — вольтметр показывает единственное напряжение между двумя контактами.

С цепями переменного тока все опять сложнее. Некоторые (и этих некоторых не так мало, как я убедился) считают, что вольтметр показывает пиковое значение напряжения Um, но это не так!

На самом деле, вольтметры обычно показывают действующее или эффективное, оно же среднеквадратичное, напряжение в сети .

Разумеется, речь идет о вольтметрах переменного напряжения! Поэтому, если будете измерять вольтметром напряжение сети, обязательно убедитесь, что он находится в режиме измерения переменного напряжения.

Оговорюсь, что «пиковые вольтметры», показывающие амплитудные значения напряжения, тоже существуют, но на практике при измерении напряжения питающей сети в быту обычно не применяются.

Разберемся, почему такие сложности. Почему бы не измерять просто амплитуду? Зачем выдумали какое-то «действующее значение» напряжения?

А все дело в потребляемой мощности. Я ведь не просто так писал о ней. Дело в том, что действующее (эффективное) значение переменного напряжения равно величине такого постоянного напряжения, которое за время, равное одному периоду этого переменного напряжения, произведет такую же работу, что и рассматриваемое переменное напряжение.

Или, по-простому, лампочка накаливания будет светить одинаково ярко, воткнем ли мы ее в сеть постоянного напряжения 220В или в цепь переменного тока с действующим значением напряжения 220В.

Для тех, кто уже знаком с интегралами или еще не забыл математику, приведу общую формулу расчета действующего напряжения произвольной формы:

Из этой формулы также становится ясно, почему действующее (эффективное) значение переменного напряжения также называют «среднеквадратичным».

Заметим, что подкоренное выражение и есть та самая «усредненная за период мощность», стоит только поделить это выражение на сопротивление нагрузки R.

Применительно к синусоидальной форме напряжения, страшный интеграл после несложных преобразований превратится в простую формулу:

где — действующее или среднеквадратичное значение напряжение (то самое, которое обычно показывает вольтметр), а Um — амплитудное значение.

Действующее напряжение хорошо тем, что для активной нагрузки, расчет усредненной мощности полностью совпадает с расчетом мощности на постоянном токе:

Это и не удивительно, если вспомнить определение действующего значения напряжения, которое было дано чуть выше.

Ну и, наконец, посчитаем, чему же равна амплитуда напряжения в розетке «на 220В«:

В худшем случае, если у вас сеть на 240В, да еще и с допуском +10%, амплитуда будет аж !

Поэтому, если хотите, чтобы ваши устройства, питающиеся от сети, работали стабильно и не сгорали, выбирайте элементы, которые выдерживают пиковые напряжения не менее 400В. Разумеется, речь идет об элементах, на которые непосредственно подаётся сетевое напряжение.

Отмечу, что для не-синусоидальной формы сигнала действующее значение напряжения рассчитывается по иным формулам. Кому интересно — могут сами взять интегралы или обратиться к справочникам. Нас же интересует питающая сеть, а там всегда должна быть синусоида.

Фазы, фазы, фазы…

Помимо обычной однофазной осветительной сети

220В все слышали и о трехфазной сети

380В. Что такое 380В? А это межфазное эффективное напряжение.

Помните, я сказал, что в однофазной сети про фазу синусоиды можно забыть? Так вот, в трехфазной сети этого делать нельзя!

Если говорить по простому, то фаза — это сдвиг во времени одной синусоиды относительно другой. В однофазной сети мы всегда могли принять за начало отсчета любой момент времени — на расчеты это не влияло. В трехфазной сети необходимо учитывать насколько одна синусоида отстоит от другой. В трехфазных сетях переменного тока каждая из фаз отстоит от другой на треть периода или на 120 градусов. Напомню, что период измеряется также в градусах и полный период равен 360 градусов.

Если мы возьмем осциллограф с тремя лучами и прицепимся к трем фазам и одному нулю, то увидим такую картину.

Читайте так же:
Автоматический включатель выключатель освещения

«Синяя» фаза — начинается от нуля отсчета. «Красная» фаза — на треть периода (120 градусов) позже. И, наконец «зеленая» фаза начинается на две трети периода (240 градусов) позже «синей». Все фазы абсолютно симметричны друг относительно друга.

Какую именно фазу брать за точку отсчета — не важно. Картина будет одинаковой.

Математически можно записать уравнения всех трех фаз:

«Синяя» фаза:

«Красная» фаза:

«Зеленая» фаза:

Если измерить напряжение между любой из фаз и нулем в трехфазной сети — то получим обычные 220В (или 230В или 240В — как повезет, см. ГОСТ).

А если измерить напряжение между двумя фазами — то получим 380В (или 400В или 415В — не забываем об этом).

То есть трехфазная сеть — многолика. Ее можно использовать как три однофазные сети с напряжением 220В или как одну трехфазную сеть с напряжением 380В.

Откуда взялось 380В? А вот откуда.

Если мы подставим в формулу расчета действующего напряжения наши данные о двух любых фазах, то получим:

Uдф — действующее межфазное, оно же линейное напряжение.

Учитывая, что амплитуда каждой фазы получим, чтодля межфазного напряжения. На рисунке наглядно показано, как образуется межфазное напряжение, которое обозначено F1-F2 из двух фазных напряжений фаз F1 и F2. Напряжение фаз F1 и F2 измеряется относительно нулевого провода. Линейное напряжение F1-F2 измеряется между двумя разными фазными проводами.

Как видим, что действующее межфазное напряжение больше амплитуды синусоидального напряжения одной фазы.

Амплитуда межфазного напряжения составляет:

Для наихудшего случая (сеть 240В и межфазное напряжение 415В, да еще 10% сверху) амплитуда межфазного напряжения составит:

Учтите это при работе в трехфазных сетях и выбирайте элементы, рассчитанные не менее, чем на 650В, если им предстоит работать между двумя фазами!

Надеюсь, теперь понятно что показывает вольтметр переменного тока?

Заключение

Итак, очень кратко, почти на пальцах, мы ознакомились с тем какие напряжения действуют в бытовых сетях переменного тока. Подведем краткие итоги всего, изложенного выше.

Переменный электрический ток — это ток, периодически изменяющийся со временем.

В каждом доме есть розетки, в которые включают всю домашнюю технику и осветительные приборы, «питающиеся» переменным током напряжением 220 вольт. В школьных мастерских имеются станки — к ним тоже подведен переменный ток, только более высокого напряжения. Во всех микрорайонах стоят будки с надписями «Трансформатор», в которых находятся трансформаторы, преобразующие переменный ток; вдоль дорог и по лесным просекам протянулись линии электропередачи опять же переменного тока. Миллионы и миллионы генераторов, трансформаторов, электродвигателей во всем мире производят, передают и используют электрическую энергию благодаря особенностям этого вида тока, обнаруженным без малого двести лет назад.

Крупнейший ученый XIX века Герман Гельмгольц говорил, что до тех пор, пока люди пользуются благами электричества, они всегда будут с благодарностью вспоминать имя Фарадея. Явление электромагнитной индукции — фундаментальное научное открытие, совершенное английским физиком Майклом Фарадеем, — легло в основу современной технической цивилизации и кардинально преобразило окружающий нас мир.

Долгие десятилетия шли активные поиски наилучшей реализации этого открытия — вплоть до отчаянной борьбы между сторонниками постоянного и приверженцами переменного тока. Правда, начавшаяся более ста лет назад «война» давно закончилась тесным и плодотворным взаимодействием, когда недостатки одного из видов тока компенсируются достоинствами другого.

Каким способом можно получить переменный электрический ток?

Поместим в постоянное и однородное магнитное поле виток проволоки abcd.

При равномерном вращении этого витка вокруг оси OO’ магнитный поток, пронизывающий его площадь будет постоянно меняться как по величине, так и по направлению. Вследствие этого, согласно закону электромагнитной индукции, в витке возникает переменная по величине и направлению ЭДС индукции.

Когда плоскость вращающегося витка становится перпендикулярна силовым линиям магнитного поля, пронизывающий ее магнитный поток наибольший, скорость же изменения его равна нулю, так как при прохождении через это положение проводники витка ab и cd скользят вдоль силовых линий поля, не пересекая их. Следовательно, ЭДС индукции, возникающая в витке, которая пропорциональна скорости изменения магнитного потока, будет равна нулю.

Когда же плоскость витка параллельна силовым линиям поля, поток, пронизывающий ее, равен нулю, скорость же изменения его при прохождении через это положение наибольшая, так как в этом случае проводники витка ab и cd движутся перпендикулярно к силовым линиям поля. ЭДС, возникшая в этом случае в витке, имеет наибольшее значение. В части ab витка, ЭДС будет направлена от чертежа к наблюдателю, а в части cd наоборот — от наблюдателя за чертеж.

При дальнейшем вращении витка ЭДС, сохраняя неизменным свое направление, будет уменьшаться до тех пор, пока опять не станет равной нулю. Т.е. в том положении, когда величина магнитного потока будет наибольшей, а скорость его изменения — наименьшей.

При дальнейшем вращении витка скорость изменения потока, пронизывающего виток, будет увеличиваться; следовательно, ЭДС по абсолютной величине будет возрастать. Но, так как теперь виток движется навстречу магнитным силовым линиям другой стороной плоскости, то направление в нем ЭДС изменяется на противоположное: в части ab ЭДС направлена от наблюдателя за чертеж, а в части bc — из-за чертежа к наблюдателю. И опять это направление ЭДС сохраниться и при дальнейшем движении витка, при этом абсолютная ее величина будет убывать.

При последующих оборотах витка все эти явления будут повторяться вновь.

Таким образом, величина ЭДС индукции во вращающемся витке за один его оборот изменяется от минус ξmax до плюс ξmax.

Для того чтобы пронаблюдать за происходящими изменениями ЭДС непосредственно, разомкнем виток и присоединим его концы к осциллографу. При вращении витка в магнитном поле осциллограф запишет все изменения тока, по которым можно будет судить и об изменениях ЭДС индукции в витке.

На рисунке изображен график изменения ЭДС индукции в витке за время совершения одного полного оборота. Вверху показаны последовательные положения витка в магнитном поле, против них (т.е. внизу) — значения ЭДС индукции в витке. Направление силовых линий магнитного потока, пронизывающего виток, показано стрелками. Кружочки изображают сечение витка плоскостью чертежа с указанием направления тока в нем.

Как показывает осциллограмма, ток, возникающий в витке при равномерном его вращении в однородном магнитном поле, изменяется синусоидально. Поэтому такой ток еще иногда называют переменным синусоидальным током.

Читайте так же:
Какое сечение провода нужно для освещения квартиры

В дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения (или ЭДС), меняющегося с циклической частотой по закону синуса или косинуса:

где Um — амплитуда напряжения, т.е. максимальное по модулю значение напряжения.

Аналогичные формулы записываются и для ЭДС индукции.

Если в цепи напряжение меняется с циклической частотой «Омега», то и сила тока в цепи будет меняться с той же частотой. Однако колебания силы тока в цепи не обязательно должны совпадать с колебаниями напряжения. Поэтому, в общем случае, мгновенное значение силы тока будет определяться по формуле:

Рассмотрим еще 2 основные характеристики переменного тока — период и частоту.

Под периодом переменного тока понимают промежуток времени, в течении которого ЭДС (или напряжение, или сила тока) совершает одно полное колебание. Напомним, что обозначается период большой латинской буквой T и измеряется он в секундах.

Частотой переменного тока называется число колебаний переменного тока за одну секунду. Обозначается греческой буквой n и измеряется в Гц (герцах).

Стандартная частота переменного тока, применяемого в промышленности и осветительной сети в России и многих других странах, равна 50 Гц. Этот выбор был сделан с участием русского ученого Михаила Осиповича Доливо-Добровольского.

В США по рекомендации известного ученого Тесла, работавшего в фирме Вестингауз, основным производителем тогда электромагнитной техники, стандартная частота переменного тока равна 60 Гц.

Частота в 50 Гц означает, что на протяжении 1 секунды ток 50 раз течет в одну сторону и 50 раз в другую.

Основные выводы:

Переменный электрический ток — это ток, периодически изменяющийся со временем.

Переменный электрический ток представляет собой вынужденные электрические колебания, происходящие в электрической цепи под действием периодически изменяющейся по закону синуса или косинуса внешней ЭДС.

Периодом переменного тока называют промежуток времени, в течении которого сила тока (или напряжение, или ЭДС) совершает одно полное колебание.

Частота переменного тока — число колебаний переменного тока в секунду.

Прослушать лекцию — https://www.youtube.com/watch?v=87K6VGm8JAY

Составить краткий конспект, после выполнить самостоятельную работу

Методические рекомендации

по выполнению самостоятельной работы №34

По теме

«Электромагнитные колебания и волны».

Цель занятия: закрепить изученный материал в ходе решения задач.

МТО: методические рекомендации по выполнению самостоятельной работы, линейка, карандаш, калькулятор, пособие по физике.

Содержание и последовательность выполнения заданий:

1. Решить самостоятельно следующие задачи по алгоритму:

— Запись условия задачи;

— Указание расчетной формулы;

— Решение задачи по указанной формуле.(начертить график)

Метод: Решение задач в тетрадях.

Методические рекомендации по выполнению и оформлению работы

1.Решить самостоятельно следующие задачи:

Задача №1. Значение напряжения, измеренное в вольтах, задано уравнением

Укажите все правильные утверждения.

А. Амплитуда напряжения 100 В. Б. Частота равна 50 Гц. В. Период равен 0,04 с

Задача №2. По графику, изображенному на рисунке, определите амплитуду ЭДС, период тока и частоту. Напишите уравнение ЭДС.

Задача №3. По графику, изображенному на рисунке, определите амплитуду напряжения и период колебания. Запишите уравнение мгновен­ного значения напряжения.

Задача №4. На какое напряжение надо рас­считывать изоляторы линии переда­чи, если действующее напряжение 430 кВ?

Задача №5. Трансформатор, содержащий в первичной обмотке 840 витков, повышает напряжение с 220 до 660 В. Каков коэффициент транс­формации? Сколько витков содержится во вторичной обмотке? В ка­кой обмотке провод имеет большую площадь поперечного сечения?

Домашнее задание сфотографировать или скан и прислать на почту helen . mails @ mail . ru

Урок физики 11 класс Активное сопротивление. Действующее значение силы тока и напряжения. Емкость и индуктивность в цепи переменного тока
план-конспект урока по физике (11 класс)

Алтынчурина Гульназира Рифовна

Репетиторы Учи.Дома помогут подготовиться к ЕГЭ. Приходите на бесплатный пробный урок, на котором репетиторы определят ваш уровень подготовки и составят индивидуальный план обучения.

Бесплатно, онлайн, 40 минут

Предварительный просмотр:

12. Переменный ток. Активное сопротивление. Конденсатор и катушка индуктивности в цепи переменного тока

Огромное практическое значение имеют незатухающие вынужденные колебания. Свободные электромагнитные колебания в контуре быстро затухают

и поэтому практически не используются.

Переменный ток, используемый потребителями, представляет собой не что иное, как вынужденные электромагнитные колебания.

Частота переменного тока показывает число колебаний за 1 секунду. Стандартная частота промышленного тока равна 50 Герц. Значит, на протяжении 1 с ток 50 раз течет в одну сторону и 50 раз в другую. Частота 50 Герц принята для промышленного тока во многих странах мира.

Сила тока и напряжение меняются со временем по гармоническому закону. Это вытекает из следующих рассуждений. Если напряжение на концах цепи меняется по гармоническому закону, то напряженность электрического поля внутри проводников будет также меняться гармонически. Эти гармонические изменения напряженности поля вызовут гармонические колебания скорости упорядоченного движения заряженных частиц и, следовательно, гармонические колебания силы тока.

При изменении напряжения на концах цепи электрическое поле не меняется мгновенно во всей цепи. Если время распространения изменений поля в цепи гораздо меньше периода колебаний напряжения, то можно считать, что электрическое поле во всей цепи меняется почти мгновенно при изменении напряжения на концах цепи.

Переменное напряжение, использующее потребителями в осветительной сети, создается генераторами на электростанциях.

Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генераторов переменного тока.

Поток магнитной индукции, который пронизывает проволочную рамку, пропорционален косинусу угла альфа между нормалью к рамке и вектором магнитной индукции. При равномерном вращении рамки угол альфа увеличивается прямо пропорционально времени. Поэтому поток магнитной индукции меняется гармонически.

Согласно закону электромагнитной индукции, ЭДС индукции в рамке равна взятой со знаком минус скорости изменения потока магнитной индукции по времени. Иначе ЭДС электромагнитной индукции равна производной потока магнитной индукции по времени. При изменении напряжения по гармоническому закону напряженность электрического поля в проводнике изменяется по такому же закону. Под действием переменного электрического поля в проводнике возникает переменный электрический ток, частота и фаза колебаний которого совпадает с частотой и фазой колебаний напряжения.

Цепи с резистором. Цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением, называемым активным сопротивлением. При наличии нагрузки, обладающей активным сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются. В проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения.

В цепи переменного тока промышленной частоты, равной 50 Герц, сила тока и напряжение изменяются сравнительно быстро. Мощность в цепи постоянного тока на участке с сопротивлением равна по определению произведению квадрата силы тока на сопротивление. На протяжении очень малого интервала времени переменный ток можно считать неизменным. Поэтому мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление, определяется произведением квадрата мгновенного значения силы тока на сопротивление. Под средней за период мощностью переменного тока понимают отношение суммарной энергии, поступающей в цепь за период, к периоду. Человеку необходимо знать среднюю мощность тока на участке цепи за большой промежуток времени, включающий много периодов.

Читайте так же:
Как снять выключатель наружного освещения

Здесь изображен график зависимости мгновенной мощности от времени. На протяжении одной четверти периода мощность больше половины амплитудного значения. Но на протяжении следующей четверти периода мощность меньше этой величины. На протяжении одной четверти периода эта функция пробегает ряд положительных значений.

Половина квадрата амплитуды силы тока в колебательном электромагнитном контуре есть среднее за период значение квадрата силы тока. Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы переменного тока. Всегда можно подобрать такое значение силы постоянного тока, чтобы энергия, выделяемая за некоторое время этим током, равнялась энергии, выделяемой за то же время переменным током. Действующее значение силы переменного тока равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время.

Нам важны общие характеристики колебаний, такие как амплитуда, период, частота, действующие значения силы тока и напряжения и средняя мощность. Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока.

Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения. Мощность в цепи переменного тока определяется действующими значениями силы тока и напряжения. Мощность равна произведению силы тока и напряжения.

Фактически цепь, содержащая конденсатор, оказывается разомкнутой, так как обкладки конденсатора разделены диэлектриком. Поэтому постоянный ток не может существовать в цепи, содержащей конденсатор. Переменный ток способен течь в цепи, содержащей конденсатор.

Проведем опыт. Составим последовательную цепь из конденсатора и лампы накаливания. Постоянное напряжение на зажимах источника равно действующему значению переменного напряжения. При включении постоянного напряжения лампа не светится. Но при включении переменного напряжения лампа загорается. При этом емкость конденсатора достаточно велика. Происходит периодическая зарядка и разрядка конденсатора под действием переменного напряжения. Ток, текущий в цепи при перезарядке конденсатора, нагревает нить лампы.

Рассмотрим цепь, содержащую только конденсатор, где сопротивлением проводов и обкладок конденсатора можно пренебречь. Напряжение на конденсаторе совпадает по значению с напряжением на концах цепи. Следовательно, заряд конденсатора меняется по гармоническому закону.

Сила тока представляет собой производную заряда по времени. Приведем графики зависимости силы тока и напряжения от времени. Видно, что колебания силы тока опережают колебания напряжения на конденсаторе на пи вторых.

Амплитуда силы тока равна произведению максимального напряжения емкости конденсатора и циклической частоты колебаний.

Величину икс-цэ, равную обратному произведению циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением. Роль этой величины аналогична роли активного сопротивления в законе Ома. Это и позволяет рассматривать емкостное сопротивление как сопротивление конденсатора переменному току. Чем больше емкость конденсатора, тем больше ток перезарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора. С увеличением емкости конденсатора емкостное сопротивление уменьшается. Уменьшается оно и с увеличением частоты.

Индуктивность в цепи влияет на силу переменного тока. Это можно доказать с помощью простого опыта. Составим цепь из катушки большой индуктивности и электрической лампы накаливания. С помощью переключателя можно подключить эту цепь или к источнику постоянного напряжения, или к источнику переменного напряжения с равными значениями. Лампа светится ярче при постоянном напряжении. Следовательно, действующее значение силы переменного тока в рассматриваемой цепи меньше силы постоянного тока. Здесь проявляется самоиндукция.

При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь со временем сила тока достигает наибольшего установившегося значения, соответствующего данному постоянному напряжению.

Если напряжение быстро меняется, то сила тока не будет достигать тех значений, которые оно бы приобрело с течением времени при постоянном напряжении. Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения.

При изменении силы тока по гармоническому закону ЭДС самоиндукции будет равна противоположному значению производной индуктивности.

Так как удельная работа кулоновского поля равна напряжению на концах катушки, то напряжение на концах катушки оказывается гармонически связанным с амплитудным значением напряжения контура. Следовательно, колебания напряжения на катушке опережают колебания силы тока на пи-пополам.

В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю. В момент, когда напряжение становится равным нулю, сила тока будет максимальной. Величину икс-эл, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением. Амплитуда силы тока в катушке можно найти отношением амплитуды напряжения на индуктивное сопротивление. Так выглядит закон Ома для цепи постоянного тока с катушкой.

Индуктивное сопротивление увеличивается с ростом частоты, значит, катушка хорошо проводит низкочастотные колебания и плохо – высокочастотные, а для постоянного тока оно равно нулю.

Рассмотрим использование частотных свойств конденсатора и катушки индуктивности. Реальные электрические цепи содержат все виды сопротивлений: активное, индуктивное, емкостное, поэтому ток в реальной цепи зависит от ее полного эквивалентного сопротивления.

Конденсатор хорошо проводит высокочастотные колебания и плохо – низкочастотные колебания. Катушка наоборот: хорошо проводит низкочастотные колебания и плохо – высокочастотные колебания. Эти свойства позволяют создать различные частотные фильтры – схемы, позволяющие выделить из всего сигнала низкочастотные и высокочастотные составляющие.

Колебательный контур обладает замечательным свойством – пропускать колебания только определенной частоты, зависящей от емкости конденсатора и индуктивности катушки, под действием резонанса. Эти свойства контура широко применяются в радио- и телеприёмной и передающей аппаратуре для селекции сигналов.

Конденсатор включен в цепь переменного тока с частотой 200 Герц. Напряжение в цепи 40 Вольт, сила тока 0,64 Ампера. Какова емкость конденсатора?

Вспомнив закон Ома для цепи с колебательным контуром, выразим емкость конденсатора как отношение силы тока к напряжению и циклической частоте. Чтобы определить циклическую частоту, необходимо частоту переменного тока разделить на два-пи. Получаем результат 0,5 микрофарад есть емкость конденсатора.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector