Ufass.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устройство и селективность автоматических выключателей

Устройство и селективность автоматических выключателей

Автоматический выключатель (АВ, автомат) — устройство, отключающее участок электрической цепи при возникновении в ней проблем (короткого замыкания, перегрузки и так далее). Автомат реагирует на превышение величины тока выше допустимого параметра, разрывает участок и защищает электрооборудование от повреждения и возможного возгорания. Вообще, защита от повышенных токов — основа почти всех электрических цепей , возникшая еще на этапе становления электричества и применяемая до сих пор .

Любое устройство, реагирующее на повышенные токи и работающее по принципу МТЗ, выполняет несколько функций:

  1. Быстрый разрыв поврежденной цепи для защиты от распространения повреждения.
  2. Селективная работа и надежность. Здесь подразумевается определение завышенного тока и его б езошибочное отключение автоматом , ближе всего находящимся к месту повреждения.

Виды перегрузок автоматических выключателей

  • Ток перегрузки — возникает при одновременном включении большой нагрузки или при выходе из строя одно го из подключенных устройств.
  • Ток КЗ — процесс, который имеет место при непосредственном касании фазы и нуля, без наличия какой-либо нагрузки.

Особенности перегрузок

  • Ток перегруза — параметр, который незначительно отличается от номинального тока . Он может иметь кратковременный характер, поэтому в мгновенном отключении нет нужды — процесс происходит с задержкой . Д ля каждой цепи может устанавливаться свой допустимый параметр перегрузки (иногда их несколько).
  • Ток КЗ — параметр, который в десятки, а то и в сотни раз превышает номинальный ток . Как следствие, расцепитель автомата быстро диагностирует КЗ и производит отключение. Важный момент — время отключение, которое должно быть минимальным (как правило, оно исчисляются долями секунд). Чем быстрей отключится поврежденный участок, тем ниже риски повреждения про водов и электроприемников .

как устроен автомат

Как устроен автомат ?

В теории для каждого их токов может быть вычислено индивидуальное время отключения, имеющее разную величину (от 1-2 секунд до 10-15 минут и более ). С другой стороны, ложная работа должна быть исключена. Если протекающий в цепи ток не несет риска для проводников и электроприборов, то в его отключении нет необходимости.

Это значит, что при установке тока перегрузки должна быть учтена реальная нагрузка защищаемой цепи. Не менее важный момент — проверка защиты перед подключением на факт точного определения тока и времени срабатывания.

Автоматические выключатели имею т три типа расцепителей :

  1. Механический — подразумевает ручное отключение и включение устройства.
  2. Электромагнитный — расцепитель , позволяющий быстро отключать токи КЗ.
  3. Тепловой — наиболее сложное устройство, обеспечив ающее защиту от тока перегруза.

При выборе АВ уделяется внимание двум пок азателям — параметрам соленоида и теплового расцепителя . Определяются они по буквенному обозначению, нанесенному на автомате . Маркировка выполнена в виде латинской буквы, прописанной перед цифрой, отражающей номинал ьный ток устройства.

Маркировка автоматического выключателя

По упомянутой выше цифре можно определить:

  1. Параметры соленоида, встроенного в АВ, то есть на какие токи будет реагировать устройство.
  2. Параметры теплового элемента — биметаллической пластины, которая нагревается при достижении определенного тока, изгибается и разрывает цепочку. Данная з ащита гарантирует своевременное отключение в случае перегруза. Регулировка тока отключения возможна путем поджатия (ослабления) пластинки.

Ниже рассмотрим характеристики каждого из типов автоматов с позиции основных параметров — назначения, а также зависимости нагрузочного тока и времени отключения цепи при конкретном токе.

Сегодня популярны автоматические выключатели со следующими характеристиками:

  • MA — автомат без теплового расцепителя . Такое устройство будет полезно для защиты от токов КЗ, но при обычной перегрузке (незначительном превышении тока выше номинального значения) отключения не произойдет. К примеру, для защиты электродвигателей больше подойдет МТЗ на базе специальных реле;
  • A — автомат с тепловым расцепителем и соленоидом . Наименьший ток, при котором устройство сработает — 1.3 I н ом . Время срабатывания при протекании так ого тока — около 60 минут. При достижении параметра, равного 2 I н ом и более в работу вступает электромагнитный р асцепитель , отсекающий поврежденный участок за 0.05 секунд. Если по какой-то из причин отсечка не работает, отключение все равно произойдет, но уже действием теплового элемента . Срабатывание в таком случае происходит с большей выдержкой — 20-30 секунд. При 3-х кратном токе нагрузки отсечка гарантированно сработает за сотые доли секунды;

Автоматы A подходят для участков, где кратковременный перегруз в нормальном режиме работы исключен . В качестве примера можно привести схемы с полупроводниковыми элементами , которые бояться даже незначительного превышения тока;

  • B — характеристика, которая схожа с рассмотренной выше характеристикой A . Отличие заключается лишь в токе отключения отсечки (электромагнитного расцепителя ). Здесь ток срабатывания не 2 I н ом , а от 3 I н ом и более. Время отключения — 0.015 секунд. Время работы теплового элемента при 3-кратной перегрузке — 4-5 секунд. Гарантия отключения автомата — при токе 5 I н ( для переменного тока) и при токе 7 .5 I н ом (для постоянного тока).

Сфера применения автоматов с характеристикой B — цепи освещения, а также сети, где перегрузки имеют кратковременн ый характер или же их нет совсем.

  • C — характеристика автомата, которая пользуется наибольшим спросом в среде электриков. Главное преимущество таких автоматических выключателей — лучшая перегрузочная способность (если сравнивать с характеристиками A и B ). Из основных параметров стоит выделить — минимальный ток, при котором срабатывает соленоид — 5 I н ом . При таком же токе время срабатывания теплового элемента составляет 1.5 секунды. Гарантированно отсечка работает при следующих параметрах — 10 I н ом для переменного и 15 I н ом для постоянного тока
Читайте так же:
Икеа патроны с выключателем

Автоматы C — лучший вариант для цепей, имеющих смешанный тип потребителей , и без больших пусковых токов. Вот почему автоматические выключатели с характеристикой C все чаще применяются в быту ;

  • D — характеристика , отличающаяся широкими воз можностями в плане перегруза . Минимальный предел тока, при котором срабатывает отсечка (ЭМ соленоид) — 10 I н. При этом же показателе тока расцепитель сработает за 0.4 секунды. Устройство с характеристикой D гарантированно сработает при токе 20 I ном. Данный тип автоматов чаще всего монтируется для защиты электрических двигателей, в момент пуска которых имеют место большие токи;
  • K — характеристика автомата, особенная широким диапазоном между предельными токами срабатывания отсечки в цеп ях различных токов (переменного и постоянного) . Соленоид АВ с характеристикой K может отключить ток равный 8 I ном, а гарантированные токи отключения составляют 12 I ном — переменного и 18 I ном — для постоянного тока . Работает отсечка через 0.02 секунд ы . Тепловой элемент отличается высокой чувствительностью и может среагировать на ток, превышающий номинальный показатель на 5%. Благодаря своим характеристикам, автоматы K часто применяются в цепях с потребителями, имеющим и индуктивный характер нагрузки;
  • Z — характеристика автомата, также подразумевающая различия между токами срабатывания отсечки в цепях постоянного и переменного тока. Соленоид срабатывает при токе 2 I ном. Гарантированный ток, при котором будет работать соленоид — 3 I ном — для переменного и от 4.5 I ном — для постоянного тока . Тепловой элемент обладает высокой чувствительностью и срабатывает уже в случае превышения номинального тока на 5%. Используются автоматы с классификацией Z только для питания цепей с электронными устройствами.

Что такое селективность защиты

Селективность — это свойства автоматической защиты работать поочередно. Представьте длинную линию электропередач, в случае аварийной ситуации, короткого замыкания например, первым должен сработать самый близкий к месту аварии аппарат защиты. На примере квартиры это выглядит следующим образом. Вы засунули два гвоздя в розетку и сверху накинули третий — происходит К.З. Первым должен сработать автомат в щитке защищающий именно эту линию с розеткой, далее общий автомат на ваш щиток, а уж потом большой вводной автомат или вставки на ВРУ дома.

Использование характеристики «В» в бытовом электромонтаже

Некоторые электрики, для обеспечения селективности, рекомендуют ставить автоматы с характеристикой «В». Их ход мысли следующий, если поместить на одну линию два автомата с разными характеристиками «С» и «В», но одинакого номинала, например 16А, то по логике вещей первый должен отключиться автомат «B». На практике это не совсем так.

Для начала сравним цены на автоматы с разными характеристиками:

  • Выключатель автоматический однополюсный 16А C ВА47-29 4.5кА 103 рубля
  • Выключатель автоматический однополюсный 16А В ВА47-29 4.5кА 108 рублей

разница в стоимости не сильно заметна, возьмем что то поприличнее:

  • Выключатель автоматический однополюсный 16А С S201 6кА (S201 C16) 314 рублей
  • Выключатель автоматический однополюсный 16А В S201 6кА (S201 B16) 373 рублей

разница уже существеннее и чем дороже модульное оборудование, тем заметнее становится разница. Это связано с количеством выпускаемой продукции. Посмотрите выше по тексту, я приводил типичное использование для характеристики «С» — смешанная бытовая нагрузка. Именно поэтому автоматов «С» производиться в разы больше чем остальных характеристик, что и влияет на конечную цену.

Вернемся к практическому смыслу монтажа автоматов «В» для обеспечения селективности. Графики рабочих режимов отлично показывает картинка с сайта http://ekfgroup.com (за что им большое спасибо)

селективность автоматических выключателей

В верхней части графики фактически превращаются в точку (ну по идеи должны превращаться, тут немного не корректно показано). Это зона работы тепловой защиты, жесткость биметаллической пластины настраивается винтиком внутри автомата, сами понимаете обеспечить ей селективность в столь узком диапазоне значений просто винтом очень трудно.

В нижней части графика показана работа автомата от сверх токов, все верно, гарантированное отключение автомата 500% для «В» и 1000% для «С» от номинального переменного значения тока. Запомним что значения 1000% и 500% это гарантированные цифры отключения. Однако, если обратить внимание, между автоматами есть зона где характеристики соприкасаются и может оказаться так, что попадутся два автомата у которых эти характеристики очень схожи. Какой из автоматов тогда отключится первым — большой вопрос.

Я уже упоминал что наиболее корректная работа автоматов достигается за счет проверки (прогруза, испытания) их на соответствие характеристикам — точного определения тока и времени срабатывания. Поэтому если вы не производите испытание модульной аппаратуры до монтажа, все попытки обеспечить селективность только за счет буковки на этикетке просто смешны.

Предлагаю в бытовых условиях, без испытаний, не включать в схемы модульную аппаратуру отличную от характеристики «С», это только сэкономит деньги клиентов.

Селективность автоматических выключателей

На стадии работ по проектированию новых электрических сетей или проведения реконструкции цепей, уже находящихся в работе, нужно соблюдать условия безопасной эксплуатации промышленного оборудования или бытовых электрических приборов. Задачи по сохранению работоспособности подключенного оборудования, да и электрических сетей в целом, решаются путем установки автоматических выключателей (АВ).

Читайте так же:
Дугогасительные камеры для масляных выключателей

Подбор и монтаж устройств защиты необходимо осуществлять с соблюдением принципа избирательного отключения участков электрической сети, в которых возникла перегрузка или произошло короткое замыкание. Выборочное обесточивание участков сети происходит благодаря селективности защиты – согласованности характеристик последовательно установленных в цепи одного или нескольких автоматических выключателей. Селективная защита бывает:

При абсолютной селективности срабатывает только автоматический выключатель, подключенный к цепи в которой возникла аварийная ситуация. При селективной защите относительного типа происходит отключение выше расположенных по цепи автоматических выключателей, если по какой-либо причине не произошло обесточивание сети устройствами, установленными на аварийном участке цепи.

Селективность защиты обеспечивается:

— градацией устройств по номинальному току;

— благодаря установке автоматических выключателей с различными время токовыми характеристиками (ВТХ).

Селективность защиты по току достигается установкой автоматического выключателя с меньшим номинальным током со стороны нагрузки и большим со стороны подключения к силовой сети.

Селективность по время токовым характеристикам выполняется благодаря установке устройств с различной кратностью превышения фактического тока над номинальным. Например, со стороны питания ставится автомат с ВТХ класса «C», а со стороны нагрузки устройство с ВТХ класса «B».

Для того чтобы обеспечить максимальный уровень защиты бытовых приборов или технологического оборудования с помощью модульных автоматических выключателей (АВ), перед их приобретением и установкой необходимо выполнить расчет селективности автоматических выключателей по специальной формуле.

Чтобы оценить правильность подбора защитных устройств составляется карта селективности автоматических выключателей, представляющая собой сводный график время токовых характеристик установленных в цепи АВ. По горизонтальной оси указываются значения тока в кА, а по вертикальной оси время срабатывания в секундах.

После монтажа защитных устройств и подключения оборудования выполняется проверка селективности автоматических выключателей. Слаженность работы последовательно установленных устройств защиты проверяется попарно в общей зоне защиты по перегрузке и короткому замыканию. Селективность защиты считается достигнутой, если характеристики устройства со стороны подключенной нагрузки располагаются на карте селективности ниже и левее графика характеристик выключателя, смонтированного со стороны питания. Кроме того, графики характеристик устройств не должны пересекаться в зоне токов коротких замыканий.

Все о селективности

Для упрощения и безопасной жизни человека было придумано множество устройств. К таким элементам относят предохранители. В этой статье рассказывается о том, что такое селективные автоматические выключатели и как они работают.

Определение селективности автоматических выключателей

Определение «селективность» подразумевает защитный механизм и отлаженное функционирование некоторых устройств, состоящих из отдельных частей, последовательно соединенных друг с другом. Зачастую такими приборами служат различные виды автоматов, предохранителей, УЗО и т. д. Результатом их работы является предупреждение сгорания электромеханизмов в случае возникновения угроз.

Как выглядит прибор

Обратите внимание! Преимуществом данной системы является ее свойство отключать лишь необходимые участки, при этом вся остальная система остается в рабочем состоянии. Единственное условие — согласованность защитных устройств между собой.

Схема зонной защиты

Для чего нужна селективность

Во время перегрузки или короткого замыкания на линии электросети автоматический предохранитель должен среагировать. В то же время необходимо, чтобы минимальная часть потребителей была отключена, а другие продолжали функционировать. Если селективность установлена грамотно, должен функционировать только аварийный предохранитель линии, а групповой предохранитель должен оставаться работающим.

Селективность автоматов

Следовательно, селективность автоматических предохранителей — это выбор устройств в системе, в которых в случае аварии в любой ее части отключение выполнялось элементом, отвечающим только за эту часть. Проще говоря, селективность — это координация функционирования приборов защиты, подключенных последовательно, так что в случае скачков напряжения или короткого замыкания отключается только та часть установки, в которой происходит неисправность.

Принцип работы и функции

Главные функции селективности заключаются в:

  • обеспечении безопасной работы приборов в помещении;
  • мгновенном определении и обесточивании зоны питания, в которой произошла поломка, без других выключений приборов, не прекращающих подачу электрической энергии в местах стабильной работы техники;
  • снижении последствий после поломки приборов или техники;
  • уменьшении напряжения на составные приборы и предупреждении поломок в неисправной части;
  • обеспечении максимально возможной безостановочной подачи энергии;
  • обеспечении беспрерывного рабочего процесса;
  • обеспечении поддержки в том случае, если сама защита, отвечающая за размыкание, придет в неисправность;
  • поддержке оптимального функционирования установки;
  • обеспечении практичности в использовании и экономической доступности.

Определение избирательности

Виды селективной защиты разделяют на:

  • полную. Два устройства соединены последовательным соединением. При воздействии сверхтоков активируется только одна защита, которая находится ближе к зоне повреждения;
  • частичную. Похожа на полное, но защита действует только до определенного показателя перегрузки по току;
  • временную. Схема включает в себя несколько машин с одинаковыми токовыми параметрами, но с разным временем воздействия. В результате от ближайшего к поломке до самого удаленного выключателя устройства страхуют друг друга (например, ближайший будет работать через 0,02 сек., следующий через 0,5 сек., а последний — через 1 сек., если остальные 2 не работают).

Принцип действия текущей селективности защиты подобен времени, но только воздействие происходит по величине тока. Например, автоматические выключатели установлены на входе 25 А, затем 16 А, а затем 10 А. В то же время они могут иметь одинаковое время отключения. В дополнение к реакции защитных механизмов на ток также определяется время этой реакции.

Читайте так же:
Автоматические выключатели авв щиты

Предохранители в щитке

При обнаружении некорректной работы в установке можно точно определить неисправную зону и отключить подачу электроэнергии только в нее. Все процессы предотвращения повреждений происходят в литом корпусе выключателя. Отключение происходит за такое короткое время, что отметка максимального значения тока не достигает своего результата.

К сведению! Избирательность защиты может быть абсолютной и относительной. В первом случае отключается только поврежденная часть цепи. По этому принципу работают предохранители, установленные в электроприборах.

Какое токоограничение в селективности

Модульные автоматические выключатели имеют такой параметр, как класс ограничения тока, который фактически отражает скорость электромагнитного расцепителя. Казалось бы, чем быстрее, тем лучше, но для селективности имеет смысл поставить групповую машину с более медленным откликом, чтобы во время короткого замыкания на какой-либо исходящей линии она не работала вместе с автоматом этой линии.

Зона перегрузки

Хотя нет никакой гарантии, что автомат с более низким классом ограничения тока будет работать медленнее, чем автомат с более высоким. Вряд ли все производители придерживаются единых стандартов по этому параметру. Но если на выходной линии можно поставить автомат с более высоким классом ограничения тока, то это стоит сделать.

Разновидность селективности

Селективность защиты подразделяется на абсолютную или относительную в зависимости от того, какие участки отключаются. Для первого случая надежней всего срабатывают предохранители на поврежденном участке цепи. Во втором отключаются выше расположенные автоматы, если защита ниже не отработала по разным причинам.

Полная и частичная защита

При такой защищённости цепи подразумевается последовательное подключение аппаратов. В случае возникновения сверхтока сработает тот автомат, который ближе всего к месту повреждения.

Разновидности УЗО

Важно! Частичная избирательная защита отличается от полной селективности тем, что срабатывает лишь до установленного значения сверхтока.

Токовый тип селективности

Выстраивая в убывающем порядке величины токов от источника к нагрузке, обеспечивают работу токовой избирательности. Главной мерой здесь является предельное значение токовой метки. Например, начиная от источника питания или ввода, автоматические выключатели устанавливают в последовательности: 25 А, 16 А, 10 А. Все автоматы могут иметь одинаковое время на срабатывание.

Обратите внимание! Между автоматами должно быть высокое сопротивление цепи, тогда они будут иметь эффективную избирательность. Повышают сопротивление путём увеличения протяжённости линии, включения участков с проводом меньшего диаметра или вставкой трансформаторной обмотки.

Временной и времятоковый вариант

Что значит селективная защита по времени? Особенностью такого построения схемы релейной защиты является привязка ко времени срабатывания каждого защитного элемента.

Принцип работы выключателей

Автоматические выключатели обладают одинаковыми токовыми параметрами, но имеют разную выдержку времени при срабатывании. Время срабатывания увеличивается по мере удаления от нагрузки. К примеру, самый ближний рассчитан на срабатывание после 0,2 сек. В случае его отказа через 0,5 сек. должен сработать второй. Работа третьего автоматического выключателя рассчитана через 1 сек. в случае несрабатывания первых двух.

К сведению! Очень сложной считается времятоковая избирательность. Чтобы её организовать, необходимо выбирать приборы групп A, B, C, D. У группы А наивысшая защита (применяется в электроцепях). Каждая из этих групп имеет индивидуальную реакцию на величину электрического тока и временную задержку.

Зонная схема защиты

Зонный способ сложный и недешевый, поэтому применяют его в основном в промышленности. Как только пороговые показатели тока достигают максимума, в центр контроля поступают данные, и выбранный автомат срабатывает. Электрическая сеть с таким видом избирательности включает специальные электронные расцепители.

Автоматический выключатель 5SL

Когда обнаруживается нарушение, от выключателя, расположенного ниже, поступает сигнал к устройству, находящемуся выше. Первый автомат должен отреагировать в течение секунды. Если он не среагировал, срабатывает второй.

Сравнивая этот вид селективности с временной избирательностью, можно увидеть, что время срабатывания в этом случае намного ниже, иногда составляет сотни миллисекунд.

Обратите внимание! При зонной схеме защиты снижается как процент интервенции в систему, так и процент ее повреждения. Уменьшаются тепловые и динамические влияния на части установки, возрастает число уровней селективности.

Как правильно рассчитать селективность

Чаще всего защитными устройствами выступают обыкновенные автоматические выключатели. Их селективность обеспечивается с помощью верного выбора и настроек параметров. Принцип работы таких выключателей обусловлен соблюдением следующих условий:

  • Iс.о.послед ≥ Kн.о. I к.пред., где: Iс.о.послед — ток, при котором вступает в действие защита; I к.пред. — ток короткого замыкания в конце зоны действия защиты;
  • Kн.о. — коэффициент надёжности, зависящий от параметров.

Определить селективность при управлении аппаратами по времени можно при помощи следующей формулы: tс.о.послед ≥ tк.пред.+ ∆t, где: tс.о.послед и tк.пред. — временные интервалы, через которые срабатывают отсечки автоматов в зависимости от близости к источнику питания; ∆t — временная ступень селективности.

Таблица селективности

Ниже представлена таблица селективности для автоматических выключателей. Расчет селективности автоматических выключателей можно осуществить с помощью онлайн-калькулятора. Вручную просчитывать лучше только опытному электрику, который и будет подключать предохранители.

Таблица селективности

Безопасная проводка не может работать без избирательности автоматов. Благодаря этой статье можно грамотно подобрать устройства для создания защиты. Для безопасного подключения рекомендуется обращаться к мастерам.

Читайте так же:
Марки вводных автоматических выключателей

Повышение селективности низковольтных автоматических выключателей

Неотъемлемой частью систем защиты сетей электроснабжения являются быстродействующие автоматические выключатели, которые применяются как для работы в номинальных режимах для оперативных коммутаций, так и для отключений в аварийных режимах, при внезапном коротком замыкании. Ввиду чувствительности электрооборудования (кабельных сетей, полупроводниковых преобразователей) к токовым перегрузкам к аппаратам защиты предъявляется требование высокого быстродействия с целью ограничения аварийных токов по длительности и амплитуде.

Поэтому требования увеличения их предельной коммутационной способности и обеспечения селективной работы автоматических выключателей в значительной мере определяют направления по созданию новых типов автоматических выключателей.

Рост мощности низковольтных сетей и необходимость уменьшения материалоемкости аппаратов заставляют по-новому решать проблемы селективной защиты, в том числе только токоограничивающими автоматическими выключателями. Такая защита по сравнению с выполненной по ступенчато-временному принципу имеет существенные особенности, связанные с тем, что в токоограничении и анализе места короткого замыкания участвуют все выключатели, расположенные между источником тока и местом короткого замыкания, а отклонение должен произвести выключатель, ближайший к месту короткого замыкания.

На сегодняшний момент при проектировании систем защиты для низковольтных сетей существует проблема в подборе оборудования, отвечающего требуемым характеристикам. Фирмы-производители гарантируют селективную работу автоматических выключателей собственного производства. Причем форма представления их рекомендаций по выбору аппаратов защиты основывается исключительно на собственных экспериментальных данных и не поддаётся анализу с точки зрения режимов работы системы электроснабжения и взаимозаменяемости с оборудованием других фирм-производителей.

Это существенным образом ограничивает проектантов в выборе аппаратов защиты. Такая ситуация, во-первых, препятствует применению оборудования с наилучшими характеристиками при разработке проектной документации. А во-вторых, фактически «привязывает» проектную, а в дальнейшем и эксплуатирующую организацию к конкретным маркам аппаратов. В некоторой степени это снижает надёжность и гибкость систем электроснабжения, а также создаёт опасность уменьшения конкурентной борьбы на рынке низковольтного оборудования.

В настоящее время для организации селективной работы автоматических выключателей на низком напряжении применяют различные методы. Наиболее популярными из них являются «токовая» и «временная» селективности [1]. Для автоматических выключателей всегда существует формально предельный ток селективности, обусловленный расчётными значениями токов короткого замыкания и взаимным расположением характеристик аппаратов. Однако производители гарантируют для автоматических выключателей категории «А» собственного производства селективную работу за границей Is (рис. 1, 2).

Данные представляются в виде «таблиц селективности» (рис. 3). Это, безусловно, удобно, так как не требует применения время-токовых характеристик для определения области селективной работы аппаратов. Однако такие таблицы абсолютно не поддаются анализу с точки зрения взаимозаменяемости с оборудованием других производителей, так как представленные в них данные основаны на экспериментальных данных, полученных для аппаратов только собственного производства. Из таблиц селективности можно сделать вывод о том, что время срабатывания аппаратов зависит от номинала электромагнитных расцепителей. Такой метод организации селективной работы аппаратов можно назвать «естественной селективностью», так как для его организации не требуется никаких дополнительных технических средств и мероприятий.

Очевидным недостатком временной селективности, помимо существования вышеизложенных границ применения, является также необходимость затрачивания некоторого времени на ожидание «решения» системы защиты электроустановки. Это время ожидания является необходимым исходя из самого принципа организации данного метода [2]. При этом система электроснабжения подвергается действию аварийного тока, что приводит к дополнительному износу оборудования и более высоким требованиям к его термической и динамической стойкости. Уменьшение времени ожидания на ступенях временной задержки возможно при уменьшении разброса значений во время-токовых характеристиках автоматических выключателей (повышение точности срабатывания), что, безусловно, связано со значительным увеличением себестоимости оборудования. Применение в аппаратах микропроцессорных расцепителей, что также связано с увеличением себестоимости, позволяет повысить быстродействие системы защиты за счет увеличения точности работы (рис. 4).

К временной селективности также можно отнести и логическую селективность, и селективность «Sellim» (рис. 5). Суть логической селективности заключается в организации дополнительных информационных связей между аппаратами защиты. Нижестоящий аппарат подаёт команду «запрет на срабатывание» вышестоящему аппарату. Но необходимость наличия дополнительных физических каналов связи снижает надёжность селективной работы.

Метод «Sellim», предложенный Schneider Electric, позволяет организовать полную селективность токоограничивающих автоматических выключателей, но проблема с большим временем задержки срабатывания остается, так как суть метода заключается в том, что вышестоящий аппарат должен сработать на второй полуволне аварийного тока.

Для развития метода «естественной селективности» автоматических выключателей вначале необходимо было найти подтверждение зависимости времени срабатывания автоматического выключателя от номинала электромагнитного расцепителя. Математическая модель совместной работы двух расцепителей показала, что предельный ток селективности тем больше, чем больше отношение масс якорей. Чтобы проверить адекватность полученных моделей, были проведены натурные испытания аппаратов, параметры которых использовались в качестве исходных данных для математических моделей:

а ) АВВ – серия S 231;

б ) Schneider Electric – серия Multi 9;

в) «Электроаппарат» (Курск) – серия ВА 66–29;

г) ЧЭАЗ – серия ВА 47-29.

Эти аппараты типичны для своего класса и используются для защиты от сверхтока в системах электроснабжения установок потребителей [7, 8]. Предельные токи селективности были найдены для различных сочетаний аппаратов [3]. Полученные отношения масс якорей аппаратов и сравнение данных с таблицами селективности производителей также подтвердили сделанные предположения.

При организации селективности между токоограничивающими аппаратами возникает ряд сложностей другого характера. Ток короткого замыкания при токоограничении существенно отличается от расчетного ожидаемого тока короткого замыкания (рис. 6 а). Поэтому пользоваться время-токовыми характеристиками становится невозможным и применяют характеристики I 2 t = f(Iож). В [6] предусматривается возможность использования Джоулева интеграла для организации селективной работы аппаратов защиты. Физический смысл величины I 2 t – это импульс тока, проходящего через аппарат при аварии. Кривая срабатывания I 2 t (рис. 6 б) имеет характерные области:

Читайте так же:
Автоматический выключатель с электронным расцепителем параметры

– зона А: аварийный ток достигнет уровня срабатывания расцепителя; типичное время срабатывания для расцепителя мгновенного действия или расцепителя с временной задержкой 50 мс;

– точка В: аварийный ток превышает уставку срабатывания расцепителя, время отключения снижается и стабилизируется на 20 мс начиная с 16 ном;

– точка С: за счет появления напряжения на дуге при отбросе контактов аппарат находится на пороге отбрасывания контактов – в начале токоограничения. Ограничение тока зависит от фазы тока и напряжения и выражается в снижении времени отключения с 20 до 10 мс по мере увеличения тока IКЗ;

– точка D: ток достигает 1,7 порога электродинамического отбрасывания контактов, энергия отбрасывания контактов достаточна для их полного открытия, время отключения 10 мс. Отбрасывание контактов самопроизвольно и независимо, однако для фиксации аппарата в отключённом состоянии и предотвращении повторного замыкания требуется срабатывание расцепителя;

– зона Е: когда ток превысит в 2 раза порог отбрасывания контактов, токоограничение становится все более и более эффективным, что выражается в сокращении времени отключения;

– точка F (окончание кривой): означает предел отключающей способности аппарата.

Таким образом, представленная кривая несет очень важную информацию (рис. 6 а, б):

– порог срабатывания расцепителя аппарата (Iуст, точка А);

– I 2 t – энергия отключения в функции ожидаемого тока короткого замыкания IКЗ;

– ток начала отброса контактов (Ir, точка С);

– Рdc (точка F) – предел отключающей способности аппарата;

– виртуальное время отключения (tvc) в функции ожидаемого тока короткого замыкания IКЗ;

– величину пика токоограничения в функции от ожидаемого тока короткого замыкания IКЗ;

– ток, выше которого tvc< 10 мс (начало токоограничения).

При каскадном соединении токоограничивающих автоматических выключателей наблюдаемое токоограничение существенно больше, чем токоограничение при защите лишь одним токоограничивающим аппаратом. При этом вышестоящий аппарат «помогает» нижестоящему аппарату отключать токи короткого замыкания, превышающие наибольшую отключающую способность нижестоящего аппарата [6]. Это позволяет существенно сократить затраты на оборудование защиты электроустановки, так как можно использовать аппараты с заниженными характеристиками по наибольшей отключающей способности. В таблицах каскадного соединения, предоставляемых производителями низковольтного оборудования, можно обнаружить сведения по наибольшей отключающей способности и предельному току селективности каскадного соединения (рис. 7).

Проблема с невозможностью полноценного оперирования с табличными данными остается той же, что и при естественной селективности. Для развития метода «энергетической селективности» [4] каскадного соединения автоматических выключателей было проведено экспериментальное исследование их поведения при отключении токов короткого замыкания [5]. Результатом исследования стала разработанная методика, позволяющая с помощью графических построений определить суммарное токоограничивающее действие при известном ожидаемом токе короткого замыкания или определить наибольшую отключающую способность каскадного соединения. Метод основан на результатах многочисленных экспериментов, которые показали, что при нарастании аварийного тока (если значения токов превышают пороги отбрасывания контактов выключателей), электродинамический отброс контактов происходит неодновременно. Задержка движения контактов тем больше, чем больше разница в номиналах аппаратов (рис. 8 а, б).

Таким образом, рассмотренные в статье проблемы наглядно показали недостаточную теоретическую базу в вопросах селективности низковольтных автоматических выключателей. Научное обоснование естественной селективности позволит в дальнейшем организовывать селективную работу аппаратов по время-токовым характеристикам в зоне токов короткого замыкания на стадии проектирования, а не при пусконаладочных испытаниях [6]. Разработанные математические модели, обладающие достаточной степенью адекватности, позволяют проводить оценку селективности электромагнитных расцепителей на стадии выбора аппаратов при проектировании электроустановки, а не при пусконаладочных работах. Предложенная методика организации селективной работы токоограничивающих аппаратов дает возможность проектанту гарантировать их селективность при любом количестве аппаратов в каскаде. При этом становится совершенно необязательным использование аппаратов какого-либо одного производителя.

1. Руководство по устройству электроустановок. Schneider Electric S. A.

2. Крючков И. П., Неклипаев Б. Н., Старшинов В. А., Пираторов и др. Расчет коротких замыканий и выбор электрооборудования. – М.: Издательский центр «Академия», 2005.– 461 с.

3. Аветян А. Г. Особенности применения нерегулируемых автоматических выключателей в осветительных и аналогичных сетях. Дисс. канд. техн. наук. 2006.

4. Селективность автоматических выключателей АББ в сетях низкого напряжения. АББ Индустри и Стройтехника. 2007.

5. Джебицки С., Вальчук Е. Токоограничивающие автоматические выключатели.– Л.: Энергоиздат, 1982.– 116 с.

6. ГОСТ 50030.2–99 (МЭК 60947-2-98). Аппаратура распределения и управления низковольтная. Ч. 2. Автоматические выключатели.

7. Иващенко В. С., Райнин В. Е. Развитие методов организации полной селективности действия аппаратов защиты. Радиоэлектроника, электротехника и энергетика. Десятая научно-техническая конференция студентов и аспирантов. Тезисы докладов.– М.: МЭИ, 2004.

8. Иващенко В. С., Райнин В. Е. Естественная селективность автоматических выключателей. Радио-электроника, электротехника и энергетика. Одиннадцатая научно-техническая конференция студентов и аспирантов. Тезисы докладов. – М.: МЭИ, 2005.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector