Ufass.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Розетка для оптоволокна в квартире. Где лучше разместить оптическую розетку при переходе с ADSL на GPON

Розетка для оптоволокна в квартире. Где лучше разместить оптическую розетку при переходе с ADSL на GPON?

Розетка для оптоволокна в квартире. Где лучше разместить оптическую розетку при переходе с ADSL на GPON?

В связи с переводом телефонных сетей с меди на GPON, в подъезде разводят оптику.
Сейчас у меня в квартире рядом с «главным» компьютером висит ADSL WiFi модем, рядом свитч. От них выполнена разводка Езернетом по квартире — на стене компьютерные розетки и провода ко второму компу, телевизорам, спутниковрму тюнеру с шарингом, 2 резервных Езернет провода выведены в запираемый тамбур на 2 квартиры. По квартире «бродят» и пользуются Инетом ноутбук, смартфон, читалка. Уровня WiFi им хватает в любом месте.
Сейчас «главный комп», модем, телефон, свитч запитаны от UPS.
Оптическую розетку можно вывести:
1. Туда же, где сейчас ADSL модем — нужно вводить оптический питгейл в квартиру, двигать мебель, сверлить стены, вскрывать плинтуса, но GPON модем можно будет подключить к тому же UPS’у, использовать имеющуюся разводку, WiFi гарантированно будет работать по всей квартире.
2. Разместить оптическую розетку и GPON модем в тамбуре, подключить выходы компьютерной сети и телефонии модема к имеющимся проводам. Не нужно выполнять в квартире никаких работ — вся морока только в тамбуре. Не понятно, пробьет ли WiFi нормально всю квартиру, для подключения GPON модема к UPS нужно будет либо ставить отдельный UPS в тамбуре, либо подключать БП рядом с «Главным компом» и пробрасывать низковольтное питание по свободным парам Езернет проводов в тамбур. Тамбур запирается, так что оборудование там в полной безопасности.
3. Размещение — как в п.2. Если не заработает нормально WiFi, можно перевести модем GPON в режиме бриджа, на нем выключен WiFi, установить дополнительный WiFi роутер на месте модема — гарантированно пробьет WiFi по всей квартире.
4. Еще какие варианты — соображения?
Не могу принять решение… А вечером нужно сделать.

Как соединить оптоволокно. Как соединить оптоволоконный кабель

Оптоволоконный кабель представляет собой пластиковую или стеклянную нить, внутри которой переносится свет. Используется он для передачи на большие расстояния цифровой информации с высокой скоростью. Для того чтобы соединить оптоволокна с оборудованием, необходимо прибегнуть к специальным методам.

Как соединить оптоволокно. Как соединить оптоволоконный кабель

  • — сплайс;
  • — безворсовая салфетка;
  • — спирт;
  • — скалыватель;
  • — специальный сварочный аппарат;
  • — оптический тестер.

Для механического соединения понадобится сплайс, в корпус которого вводятся через каналы сколотые концы оптических волокон. Прежде всего, их необходимо очистить и обезжирить. Оболочку снимите стриппером буферного слоя. Смочите безворсовую салфетку спиртом и обезжирьте ею концы волокон. Затем сколите торец волокна под углом 90° при помощи специального инструмента – скалывателя.

Готовые концы введите через боковые каналы сплайса с разных сторон в камеру, которая заполнена иммерсионным гелем. Вводите волокна до взаимного контакта. Крышка сплайса после закрытия надежно скрепит место соединения. Установите собранный сплайс на сплайс-пластину кросса или муфты вместе с технологическим запасом волокна. Проверьте качество соединения при помощи рефлектометра или оптического тестера.

Читайте так же:
Где сделать розетку для встраиваемой вытяжки

Еще один метод соединения оптических волокон – сварка. Для нее вам понадобится специальный аппарат, содержащий в себе микроскоп, зажимы, дуговую сварку, микропроцессор и термоусадочную камеру. Приготовьте концы волокон к сварке аналогично тому, как подготавливали их к механическому соединению, сняв с них оболочку. На один конец наденьте термоусадочную гильзу, которая позволит защитить места сварки. Затем, как указано в первом шаге, произведите обезжиривание и скол концов.

Уложите волокна в сварочный аппарат, в котором они выровняются. Автоматический аппарат юстирует волокна, оценит скол и, получив подтверждение от оператора, произведет сварку. Если аппарат не обладает такими функциями, эти операции нужно произвести вручную. Оцените качество сварки оптическим рефлектометром. Данный прибор позволит выявить степень затухания и неоднородности. Сдвиньте защитную гильзу на место сварки и на минуту установите в термоусадочную печь. Когда гильза остынет, поместите ее в защитную сплайс-пластину кросса или муфты вместе с технологическим запасом волокна.

Как соединить оптоволокно и витую пару. Типы полировки (шлифовки) оптоволоконных разъемов

Шлифовка или полировка оптоволоконных разъемов призвана обеспечить идеально плотное соприкосновение сердечников оптоволокна. Между их поверхностями не должно быть воздуха, так как это ухудшает качество сигнала.

На данный момент используются такие типы полировки, как PC, SPC, UPC и APC .

PC — прародитель всех остальных видов полировки. Разъем, обработанный методом PC (в том числе вручную), представляет собой скругленный наконечник.

Обратите внимание, на рисунке видно, что соединение коннекторов с плоским торцом чревато возникновением воздушной прослойки. В то время как скругленные торцы соединяются более плотно.

Может применяться в сетях небольшой дальности, предполагающих небольшую скорость передачи данных.

SPC — улучшенный вариант PC, но шлифовка производится только машинным способом.

UPC — почти плоский (но не свосем) разъем, который производится с применением высокоточной обработки поверхности. Дает отличные показатели отражательной способности (по сравнению с PC и SPC), поэтому активно применяется в высокоскоростных оптических сетях.

Коннекторы с этим типом разъема чаще всего — синие.

APC — разъем, обработанный по совсем другому принципу: концы скошены под углом 8 градусов. Такая полировка поверхности дает самые лучшие результаты. Обратные отражения сигнала практически сразу покидают покидают оптоволокно, и благодаря этому снижаются потери.

Разъемы с полировкой APC применяются в сетях с высокоми требованиями к качеству сигнала : передача голосовых,

Коннекторы с этим типом разъема — зеленого цвета.

Сравнение формы наконечника и пути отраженного сигнала в разъемах с полировкой UPC и APC:

Как соединить оптоволокно и витую пару. Типы полировки (шлифовки) оптоволоконных разъемов

Зависимость потерь на линии от типа полировки оптического коннектора изложена в таблице:

Как соединить оптоволокно и витую пару. Типы полировки (шлифовки) оптоволоконных разъемов

Как видим, полировка UPC (скругленные торцы) и APC (скошенные торцы) — эффективнее всего. Поэтому патчкорды и пигтейлы с этим типом шлифовки чаще всего применяются.

Типы оптических разъемов

На практике наши монтажники оптоволоконных сетей в подавляющем большинстве случаев работают с типами FC, LC, SC. На более редких видах коннекторов мы пока останавливаться не будем.

Как соединить оптоволокно и витую пару. Типы полировки (шлифовки) оптоволоконных разъемов

Старый, зарекомендовавший себя стандарт. Отличное качество соединения , особенно FC/UPC, FC/APC.

  • подпружиненное соединение, за счет чего достигается «вдавливание» и плотный контакт;
  • металлической колпачок — прочная защита;
  • коннектор вкручивается в розетку, а значит, не может выскочить, даже если случайно дернуть;
  • шевеление кабеля не влияет на соединение.
Читайте так же:
Двойные розетки с защитой от детей

Однако плохо подходит для плотного расположения разъемов — необходимо пространство для вкручивания/выкручивания.

Как соединить оптоволокно и витую пару. Типы полировки (шлифовки) оптоволоконных разъемов

Более дешевый и удобный, но менее надежный аналог FC. Легко соединяется (защелка), разъемы могут располагаться плотно.

Однако пластиковая оболочка может сломаться, да и на затухание сигнала и обратные отражения влияют даже прикосновения к коннектору.

Как развести оптоволокно по квартире. Как действует передача данных через оптоволокно

Так передается свет по оптоволокну

Передача сигнала через обычные провода с помощью электрического тока упирается в два препятствия, которые ограничивают предел скорости.

  1. Сигнал с высокой частотой быстро затухает на большом расстоянии.
  2. У токов высокой частоты большие потери энергии через излучение в окружающую среду.
  3. Рядом находящиеся провода и оборудование наводят помехи на сигнал.

С этими негативными факторами борются, применяя промежуточные усилители, экраны, свивая провода. Но всему есть предел. На сегодня повышение скорости передачи информации, в основном, решается с помощью разделения ее на параллельные потоки. Например, USB 3.0 отличается от более раннего USB 2.0 тем, что для передачи данных используются не одна, а несколько пар проводов.

Кардинально решить вопрос смогли только с помощью оптоволоконных кабелей. В них сигнал передается с помощью света, точнее лазерного излучения, которое слабо затухает на больших расстояниях. Для связи используются стеклянные волокна, в которых благодаря специально подобранным свойствам сердечника и внешнего слоя проявляется эффект полного отражения светового пучка.

Также благодаря небольшому диаметру они гибкие (с тонкими гибкими стеклянными волокнами мы встречаемся и в таких привычных материалах как стекловата и стеклоткань).

Работает система чрезвычайно просто — с одной стороны кабеля модулируют излучение лазера, кодируя в нем информацию, которую расшифровывает фотоприемник на другом конце. По одному оптоволокну можно передавать множество потоков, параллельно используя лазеры с разным спектром.

Скорость передачи по оптоволокну на порядки превышает возможности металлических проводников и достигает нескольких терра бит в секунду.

Имеет оптоволокно и другие преимущества:

  1. Абсолютную защиту от внешних помех , навести посторонний сигнал на такой кабель невозможно.
  2. Благодаря отсутствию металлических проводников такие линии не могут быть повреждены пробоем изоляции от высокого напряжения , поэтому они еще и безопасны для пользователей.
  3. Современный оптоволоконный кабель имеет небольшой диаметр и занимает много места в лотках и канализации.
  4. Считать информацию не повреждая кабель, и не нарушая его работоспособности известными методами (например, фиксируя электромагнитное излучение) невозможно.

Еще одно достоинство оптоволокна — оно не представляет интереса для злоумышленников, так как не содержит цветных металлов.

Волоконно-оптические соединители

Волоконнооптический соединитель (оптический коннектор, разъем) — устройство терминации концов оптоволокна, предназначенное для быстрого механического соединения и разъединения оптических волокон, по сравнению с терминацией посредством сплайс-пластины. Коннекторы механически совмещают центры волокон, позволяя проходить световому потоку. Более качественные разъёмы дают крайне малые потери светового сигнала от отражения или перекоса волокон. В общей сложности, на рынке присутствует около 100 типов волоконнооптических соединителей [1] .

Содержание

Конструкция [ править | править код ]

Разъёмное соединение оптических волокон состоит из трёх частей: двух соединителей и соответствующей им по типу розетки. Соединители вставляются в розетку с противоположных сторон (во встречном направлении) до полного контакта друг с другом и фиксируются. Способ фиксации коннекторов в розетке может быть резьбовым, байонетным, при помощи запорного механизма и определяется его типом.

Читайте так же:
Как расположить розетки икеа

Волоконноптический соединитель FC/PC

В пластмассовом или металлическом корпусе оптического соединителя (коннектора) встроен наконечник (ferrule), изготовленный из керамики (окиси циркония), имеющей коэффициент теплового расширения близкий по своему значению к коэффициенту теплового расширения стекла из которого производят оптические волокна. Это гарантирует стабильное оптическое соединение в температурном диапазоне от −40 до +80С.

Типы соединителей [ править | править код ]

По типу (дизайну) корпуса [ править | править код ]

Существующие типы (формфакторы) соединителей (отличаются по форме, размеру и способу соединения): SC, ST, LC, MTRJ, MPO, MU, SMA, FDDI, E2000, DIN4, и D4.

По типу торца наконечника (феррула) [ править | править код ]

РС — соединители (Physical Contact) — торец наконечника строго перпендикулярен продольной оси.

АРС — соединители (Angled Physical Contact) — торец наконечника имеет наклон в 8 или 9 градусов от перпендикуляра.

Волоконно-оптические соединители SC/APC с розеткой и заглушкой для розетки

Чтобы однозначно описать тип волоконно-оптического соединителя, через дробь указывается тип корпуса и тип наконечника, например FC/РС, SC/АРС.

Установка соединителя на волокно [ править | править код ]

Оптическое волокно фиксируется во внутреннем отверстии наконечника (феррула) при помощи эпоксидного клея или путем механического обжима. После чего, волокно скалывается на определенном расстоянии от торца наконечника и шлифуется. Поскольку торец наконечника имеет округлую форму (с радиусом закругления порядка 10-25 мм для РС и 5-12 мм для АРС — соединителей), конец оптического волокна принимает эту округлую форму в результате процесса шлифовки. Шлифовка торца оптического коннектора — сложный многоэтапный процесс, при котором строго контролируются значимые геометрические параметры, такие как:

Смещение вершины торца (Dome Offset или Apex Offset) — описывает отклонение верхней точки закругленного торца наконечника от продольной оси волокна. Согласно спецификации IEC, допустимо отклонение не более 50 микрон.

Заглубление (Undercut) — показывает насколько глубоко внутрь наконечника зашлифовано само волокно. При оптимальном значении заглубления прижимное усилие равномерно распределяется между волокном и керамическим наконечником. В случае превышения данного параметра — в результате более длительной шлифовки, волокно уходит глубже внутрь наконечника и таким образом теряется физический контакт. Однако, также не желательна и обратная ситуация, когда волокно выступает за пределы торцевой поверхности наконечника вследствие недостаточной продолжительности шлифовки. В этом случае большая часть прижимного усилия (8-12 Ньютон) прикладывается к волокну, что может привести к появлению «эффекта усталости»» эпоксидного клея и вдавливанию волокна внутрь наконечника. Как следствие — катастрофическое возрастание вносимых потерь.

Параметры оптического соединения [ править | править код ]

В соединенном состоянии торцы стыкуемых соединителей прижимаются друг к другу с усилием 8-12 Ньютон. Возникающая в керамических наконечниках (феррулах), эластичная деформация приводит к появлению так называемого физического контакта (physical contact — PC) и снижению влияния Френелевского отражения. Тем не менее, световой поток, проходя через место контакта, дважды переходит через границу двух сред с разными показателями преломления: стекло/воздух и воздух/стекло. Таким образом соединение оптических волокон характеризуется двумя показателями:

Вносимые потери — затухание сигнала на соединении, особенно важно учитывать при соединении одномодовых оптических волокон.

Читайте так же:
Кухонная розетка для духового шкафа

Возвратные потери (обратное отражение) — это отношение мощности прямого сигнала к обратному (отражение луча в точке контакта оптических волокон). Необходимо максимально снижать его значение, так как любое отражение приводит к сбоям в работе высокоскоростных цифровых систем передачи.

Применение [ править | править код ]

Волоконноптические соединители применяются там, где необходима возможность подключения/отключения оптоволокна: при изготовлении коммутационых шнуров — патч-кордов (соединители с обоих концов кабеля) и пигтейлов (соединитель только с одной стороны отрезка оптического волокна). Из-за процедур полировки и тонкой настройки, которые могут входить в комплекс изготовления оптических коннекторов, эти коннекторы могут собираться на производственном объекте изготовителя. Тем не менее, операции сборки и полировки могут выполняться и в том месте, где производятся монтажные работы, например, при изготовлении кросс-коннекторов между разными размерами.

Для улучшения параметров соединения оптических волокон, необходимо как можно качественнее смонтировать соединитель на оптическое волокно. Поэтому, в большинстве случаев, волоконноптические соединители устанавливаются на волокно в заводских условиях, на специальном оборудовании, с соблюдением всех технологических норм. В редких случаях специальные разновидности оптических коннекторов могут устанавливаться в «полевых» условиях, но характеристики таких соединителей хуже фабричных.

Компьютерная или оптическая розетка: разновидности и размещение

Компьютерная (информационная) розетка — это приспособление, которое позволяет подключать разные приборы к компьютерной сети. Разъёмы необходимы для подсоединения компьютеров, ноутбуков и сетевого оборудования (принтеры, телефоны и другие устройства). Компьютерные розетки представлены разными конфигурациями, например, чтобы подключить интернет, используются оптические аналоги с один или несколькими портами. Наиболее популярными производителями являются: Hyperline, Legrand, Panduit, Schneider Electric, POLO, АМР и другие.

Оптическая розетка

Основные разновидности

Интернет-розетка — это один из элементов кабельной системы, с помощью которого сетевое оборудование можно подключить к интернету. Классическим стандартом является RJ-45. Модель состоит из разъёма и короба. В стандартных образцах встречается от 1 до 4 портов. Их можно использовать для подсоединения коммутационной панели либо компьютера.

Условно компьютерные розетки можно разделить на:

  • встроенные. Модель небольшого размера вставляется в стену и фиксируется при помощи алебастрового раствора. Поверх неё крепят пластиковую панель;
  • внешние. Модель состоит из конвектора и пластикового блока, который фиксируется на поверхности стены.

Оптические розетки используют для организации домашней или офисной сети. В основном это модели с двумя разъёмами. Первый используют для подсоединения коммуникационного кабеля. Второй — для связи с патч-панелью. Кабельное подсоединение намного качественнее и надёжнее, чем Wi-Fi, поэтому его практичнее использовать при наличии у устройства порта Ethernet. Кроме того, с помощью оптической розетки можно разгрузить локальную сеть, и увеличить скорость передачи информации. Её даже можно использовать для подключения точек доступа Wi-Fi.

Оптическая розетка

Где расположить розетки при ремонте квартиры или дома

Несмотря на кажущуюся простоту монтажа, многие пользователи забывают предусмотреть некоторые моменты до ремонта. Это приводит к дальнейшим трудностям. Рассмотрим типичные ошибки:

  • забывают проложить кабель (витую пару) к телевизору;
  • оставляют короткий запас оптического кабеля, который заходит в квартиру (около 20 см). Это исключает возможность поставить розетку;
  • планируют установку роутера возле входной двери, забывая, что основное количество приборов, требующих подключения к Сети, находится в комнате;
  • располагают розетку слишком высоко (на уровне глаз), что затрудняет возможность скрыть провода и подключить оборудование;
  • забывают запланировать подключение к Сети и завод оптического кабеля. Это приводит к необходимости заново штробить стены, и портить дорогостоящий ремонт.
Читайте так же:
Корпус розетки для прицепа

Сотрудники Apelsin.Net специализируются на подключении интернета в Киеве и рекомендуют заранее спланировать схему прокладки кабеля, расположение розеток. В первую очередь необходимо продумать место для роутера. В небольшой квартире он должен находиться в центре жилья.

Оптическая розетка

Далее установите розетки в местах, где планируется подключение техники к Сети (возле телевизора, приставки, сетевого оборудования, роутера). Прокладывая кабель, необходимо сделать запас, позволяющий при необходимости проложить интернет-провод к розетке. Скрыть проводку можно в стене (предварительно сделав штробы) или при помощи пластикового корпуса, накладываемого поверх поверхности.

Важно! Силовые линии 220 вольт и интернет-провода не могут находиться в одной полости. Также запрещено соединять несколько оптических кабелей при помощи зажигалки или других подручных средств.

Типы (виды) оптических разъемов

Оптический разъем представляет собой соединение 2-х оптических соединителей (коннекторов) посредством адаптера. Адаптер имеет сквозное отверстие диаметром, соответствующим диаметру ферулы оптического коннектора, благодаря чему он способен выполнить соединение с высокой точностью.

Ферула оптического коннектора – керамическая часть коннектора цилиндрической формы, в центр которой вклеено оптическое волокно. Наиболее распространенные диаметры ферулы: 2,5 мм (в коннекторах типа FC, SC, ST) и 1,25 мм (в коннекторах типа LC).

В общем случае, все коннекторы можно разделить следующим образом:

Среди наиболее популярных коннекторов с диаметром ферулы 2,5 мм можно выделить коннекторы видов FC, SC, ST. Они в свою очередь могут быть симплексные (одиночные) или дуплексные (сдвоенные).

Каждый из этих видов коннекторов имеет свои преимущества и недостатки, которые обуславливают применение последних в тех или иных условиях.

Особенности и применение коннекторов типа SC

  • удобство и высокая скорость коммутации
  • высокая плотность коммутации
  • пластмассовый корпус ( подверженный быстрому износу, не устойчив к вибрации)
  • наиболее часто применяется в СКС (структурированные кабельные системы), ЦОД (центры обработки данных), телекоммуникациях

Особенности и применение коннекторов типа FC

  • металлический корпус (в меньшей степени подвержен износу и устойчив к вибрации)
  • меньшая по сравнению с SC плотность коммутации
  • менее удобен в эксплуатации ввиду более сложной коммутации
  • наиболее часто применяется в телекоммуникациях, промышленности и измерительных приборах

Особенности и применение коннекторов типа ST

  • металлический корпус (в меньшей степени подвержен износу)
  • меньшая по сравнению с SC плотность коммутации
  • менее удобен в коммутации чем SC, но более удобен чем FC
  • наиболее часто применяется в сетях с использованием многомодовых ВОЛС

Коннекторы с диаметром ферулы 1,25 мм классифицируются следующим образом:

Наиболее популярным среди них является коннектор LC типа.

Особенности и применение коннекторов типа LC

  • самая высокая плотность монтажа
  • удобство коммутации
  • снижена надежность и устойчивость к механическим нагрузкам за счет малого диаметра ферулы
  • наиболее часто применяется в СКС, ЦОД, сетях теллекомуникациях

Кроме того, оптические разъемы отличаются следующими параметрами:

Вебинар на тему: “Оптические разъемы, типы, установка, чистка”

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector